Determinants

Recall that

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]^{-1}=$$

The **determinant** of

- a 2×2 matrix is det $\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) =$
- a 1×1 matrix is det ([a]) =

Goal: A is invertible $\iff \det(A) \neq 0$

We will write both $det\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)$ and $\left|\begin{array}{cc}a&b\\c&d\end{array}\right|$ for the determinant.

Definition 1. The **determinant** is characterized by:

- the normalization $\det I = 1$,
- and how it is affected by elementary row operations:
 - (replacement) Add one row to a multiple of another row.
 - (interchange) Interchange two rows.
 - (scaling) Multiply all entries in a row by s.

```
Example 2. Compute \begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{vmatrix}.
```

Solution.

Example 3. Compute
$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 7 \end{vmatrix}$$
.

Solution.

The determinant of a triangular matrix is

Example 4. Compute $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$.

Solution. We do row reductions:

Example 5. Discover the formula for $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

Solution.

```
Example 6. Compute \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix}.
```

Solution.

The following important properties follow from the behaviour under row operations.

```
• det(A) = 0 \iff A is not invertible
Why?
```

- $\det(AB) =$
- $\det(A^{-1}) =$
- $\det(A^T) =$

Example 7. Recall that $AB = \mathbf{0}$, then it does not follow that $A = \mathbf{0}$ or $B = \mathbf{0}$. However, show that det (A) = 0 or det (B) = 0.

Solution.

Example 8. Suppose A is a 3×3 matrix with det (A) = 5. What is det (2A)?

Solution.

A "bad" way to compute determinants

Example 9. Compute $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$ by cofactor expansion.

Solution. We expand by the first row:

Each term in the cofactor expansion is ± 1 times an entry times a smaller determinant (row and column of entry deleted).

The ± 1 is assigned to each entry according to $\begin{bmatrix} + & - & + & \cdots \\ - & + & - & + \\ + & - & + & - \\ \vdots & & \ddots \end{bmatrix}$.

Solution. We expand by the second column:

Solution. We expand by the third column:

Why is the method of cofactor expansion not practical?

Practice problems

Problem 1. Compute	1	2	3	4	
	0	5	0	0	
	2	7	6	10	·
	2	9	7	11	

Solution. The final answer should be -10.

Problem 2. Let A be an $n \times n$ matrix.

Express the following in terms of det(A):

- $\det(A^2) =$
- $\det(2A) =$

Hint: (unless n = 1) this is not just $2 \det(A)$