Let A be $n \times n$ with independent eigenvectors $v_1, ..., v_n$. Then A can be **diagonalized** as $A = PDP^{-1}$.

Example 1. Diagonalize the following matrix, if possible.

4

$$A = \left[\begin{array}{rrr} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{array} \right]$$

Solution.

Example 2. Suppose $A = PDP^{-1}$. Then, what is A^n ?

Solution.

Linear differential equations

Example 3. The differential equation y' = ay with initial condition y(0) = C is solved $y(t) = Ce^{at}$. (This solution is unique.)

Why?

Example 4. Our goal is to solve (systems of) differential equations like:

$y'_1 = 2$	$2y_1$	$y_1(0)$	= 1
$y'_2 = -$	$-y_1 + 3y_2 +$		
$y'_{3} = -$	$-y_1 + y_2 +$	$3y_3 y_3(0)$	= 2

In matrix form:

Key idea: to solve y' = Ay, introduce e^{At}

Definition 5. Let A be $n \times n$. The matrix exponential is

 $e^A =$

It shares many properties of the usual exponential:

- e^A is invertible and $(e^A)^{-1} =$
- $e^A e^B = e^{A+B} = e^B e^A$ if AB = BA
- $\frac{\mathrm{d}}{\mathrm{d}t}e^{At} =$
- The solution to $\boldsymbol{y}' = A \boldsymbol{y}, \ \boldsymbol{y}(0) = \boldsymbol{y}_0$ is $\boldsymbol{y} =$

Example 6. If $A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$, then: $e^{A} = e^{At} =$

Clearly, this works to obtain e^D for any diagonal matrix D.

Armin Straub astraub@illinois.edu Why?

Example 8. (continued) We wish to solve:

$$\boldsymbol{y}' = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \boldsymbol{y}, \qquad \boldsymbol{y}(0) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Recall that the solution to ${\bm y}'\!=\!A{\bm y},\; {\bm y}(0)\!=\!{\bm y}_0$ is ${\bm y}\!=\!$

$$A = PDP^{-1} \text{ with } P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

 $e^{A\,t}$

 $m{y}' =$

Armin Straub astraub@illinois.edu **Example 9.** Solve the differential equation

$$\boldsymbol{y}' = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \boldsymbol{y}, \qquad \boldsymbol{y}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Solution.