
Preparing for the Final MATH 237 � Linear Algebra I
Fall 2016

Please print your name:

Our �nal exam will be comprehensive, with a focus on the material learned later in the semester.

(Note that lots of the things we learned more recently require us to know earlier material anyway.)

A good way to prepare yourself is to study the following:

� redo the practice problems for Midterm 1 and Midterm 2,

� do the problems below,

� retake the midterm exams and quizzes,

� go through the lecture sketches.

Make sure that you can brie�y but precisely de�ne our important notions (linear independence, basis, rank, dimension, :::). These
are in bold face in the lecture sketches. The sketches also contain lots of (computationally pleasant) problems with solutions.

I Computational part

Problem 1. Let A=

2664
2 0 0 1
1 2 0 0
0 0 4 1
0 0 0 1

3775.

(a) Find the eigenvalues and bases for the eigenspaces of A.

(b) If possible, diagonalize A. That is, determine matrices P and D such that A=PDP¡1.

Solution.

(a) By expanding by the third column, and then by the third row, we �nd that the characteristic polynomial is

��������
2¡� 0 0 1
1 2¡� 0 0
0 0 4¡� 1
0 0 0 1¡�

��������=(4¡�)
������
2¡� 0 1
1 2¡� 0
0 0 1¡�

������=(4¡�)(1¡�)
���� 2¡� 0

1 2¡�

����
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=(4¡�)(1¡�)(2¡�)2:

The eigenvalues are �=1; 2; 2; 4.

� For �=1, the eigenspace is null

0BB@
2664
1 0 0 1
1 1 0 0
0 0 3 1
0 0 0 0

3775
1CCA, which has basis

2664
¡1
1

¡1/3
1

3775.

This follows from:

2664
1 0 0 1
1 1 0 0
0 0 3 1
0 0 0 0

3775  R2¡R1)R2

2664
1 0 0 1
0 1 0 ¡1
0 0 3 1
0 0 0 0

3775  
1

3
R3)R3

26664
1 0 0 1
0 1 0 ¡1
0 0 1

1

3

0 0 0 0

37775

� For �=4, the eigenspace is null

0BB@
2664
¡2 0 0 1
1 ¡2 0 0
0 0 0 1
0 0 0 ¡3

3775
1CCA, which has basis

2664
0
0
1
0

3775.
This is obvious!

� For �=2, the eigenspace is null

0BB@
2664
0 0 0 1
1 0 0 0
0 0 2 1
0 0 0 ¡1

3775
1CCA, which has basis

2664
0
1
0
0

3775.

It is visible that rank

0BB@
2664
0 0 0 1
1 0 0 0
0 0 2 1
0 0 0 ¡1

3775
1CCA=3, so that the 2-eigenspace only has dimension 1.

(b) The matrix A is not diagonalizable, because there are not enough linearly independent eigenvectors: the eigen-
value 2 has multiplicity 2 but the 2-eigenspace only has dimension 1.

�

Problem 2. Let A=

24 1 2 1
0 ¡5 0
1 8 1

35.
(a) Find the eigenvalues and bases for the eigenspaces of A.

(b) If possible, diagonalize A. That is, determine matrices P and D such that A=PDP¡1.

Solution.

(a) By expanding by the second row, we �nd that the characteristic polynomial is

������
1¡� 2 1
0 ¡5¡� 0
1 8 1¡�

������=(¡5¡�)
���� 1¡� 1

1 1¡�

����=(¡5¡�)[(1¡�)2¡ 1]= (¡5¡�)�(�¡ 2):
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Hence, the eigenvalues are �=0; 2;¡5.

� For �=0, the eigenspace null

0@24 1 2 1
0 ¡5 0
1 8 1

351Ahas basis

24 ¡1
0
1

35.

� For �=2, the eigenspace null

0@24 ¡1 2 1
0 ¡7 0
1 8 ¡1

351Ahas basis

24 1
0
1

35.

� For �=¡5, the eigenspace null

0@24 6 2 1
0 0 0
1 8 6

351Ahas basis

24 2/23
¡35/46

1

35.
This requires some work:24 6 2 1
0 0 0
1 8 6

35  
R3¡ 1

6
R1)R3

264 6 2 1
0 0 0

0
23
3

35
6

375  R2,R3

264 6 2 1

0
23
3

35
6

0 0 0

375  

1

6
R1)R1

3

23R2)R2

2664 1
1

3

1

6

0 1
35
46

0 0 0

3775  
R1¡ 1

3
R2)R1

2664 1 0 ¡ 2

23

0 1
35
46

0 0 0

3775

(b) A possible choice is P =

24 ¡1 1 2/23
0 0 ¡35/46
1 1 1

35, D=

24 0 0 0
0 2 0
0 0 ¡5

35.

�

Problem 3. Suppose the internet consists of only the four webpages A; B; C; D which
link to each other as indicated in the diagram.

Rank these webpages by computing their PageRank vector.

A B

C D

Solution. Recall that we model a random surfer, who randomly clicks on links. Let at be the probability that such
a surfer will be on page A at time t. Likewise, bt, ct, dt are the probabilities that the surfer will be on page B, C or D.

The transition probabilities are indicated in the diagram to the right.

2664
at+1
bt+1
ct+1
dt+1

3775=
2666664
0 � at+ 1

2
� bt+ 1

2
� ct+1 � dt

1

2
� at+0 � bt+0 � ct+0 � dt

1

2
� at+0 � bt+0 � ct+0 � dt

0 � at+ 1

2
� bt+ 1

2
� ct+0 � dt

3777775=
2666664
0

1

2

1

2
1

1

2
0 0 0

1

2
0 0 0

0
1

2

1

2
0

3777775
=T

2664
at
bt
ct
dt

3775
A B

C D

1/2

1/2

1/2

1/21/2

1/2

1
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To �nd the equilibrium state, we determine an appropriate 1-eigenvector of the transition matrix T .

The 1-eigenspace is null(T ¡ 1 � I)= null

0BB@
2666664
¡1 1

2

1

2
1

1

2
¡1 0 0

1

2
0 ¡1 0

0
1

2

1

2
¡1

3777775

1CCA
To compute a basis, we perform Gaussian elimination (details below):

2666664
¡1 1

2

1

2
1

1

2
¡1 0 0

1

2
0 ¡1 0

0
1

2

1

2
¡1

3777775  RREF
2664
1 0 0 ¡2
0 1 0 ¡1
0 0 1 ¡1
0 0 0 0

3775
We conclude that the 1-eigenspace has basis

2664
2
1
1
1

3775. (Note that its entries add up to 2+ 1+1+1=5.)

The corresponding equilibrium state is 1

5

2664
2
1
1
1

3775=
2664

0.4
0.2
0.2
0.2

3775. This is the PageRank vector.

Correspondingly, we rank A the highest, followed by B;C;D which we rank equally.

[In hindsight, can you (at least sort of) see, directly from the diagram, why the PageRank is what it is?]

The full steps of the Gaussian elimination are:

2666666664

¡1 1

2

1

2
1

1
2
¡1 0 0

1
2

0 ¡1 0

0
1
2

1
2
¡1

3777777775
 

R2+
1

2
R1)R2

R3+
1

2
R1)R3

2666666664

¡1 1

2

1

2
1

0 ¡3
4

1
4

1
2

0
1
4
¡3
4

1
2

0
1
2

1
2
¡1

3777777775
 

R3+
1

3
R2)R3

R4+
2

3
R2)R4

2666666664

¡1 1

2

1

2
1

0 ¡3
4

1
4

1
2

0 0 ¡2
3

2
3

0 0
2
3
¡2
3

3777777775
 R4+R3)R4

266666664
¡1 1

2
1
2

1

0 ¡3
4

1
4

1
2

0 0 ¡2
3

2

3
0 0 0 0

377777775

 

¡1R1)R1

¡4

3
R2)R2

¡3

2
R3)R3

2666664
1 ¡1

2
¡1
2
¡1

0 1 ¡1
3
¡2
3

0 0 1 ¡1
0 0 0 0

3777775  
R1+

1

2
R3)R1

R2+
1

3
R3)R2

266664
1 ¡1

2
0 ¡3

2
0 1 0 ¡1
0 0 1 ¡1
0 0 0 0

377775  R1+
1

2
R2)R1

2664
1 0 0 ¡2
0 1 0 ¡1
0 0 1 ¡1
0 0 0 0

3775

This was good practice of elimination! However, notice that we can actually �nd an eigenvector x with less e�ort by
spelling out the equations: for instance, the second one is just 1

2
x1¡x2=0. Do that! �

Problem 4. Find a basis and the dimension of W = span

8<:
2664
1
2
0
3

3775;
2664
1
2
1
0

3775;
2664
2
4
1
3

3775;
2664
0
1
1
1

3775
9=;.

Solution.2664
1 1 2 0
2 2 4 1
0 1 1 1
3 0 3 1

3775  
R
2
¡2R

1
)R

2

R
4
¡3R

1
)R

4

2664
1 1 2 0
0 0 0 1
0 1 1 1
0 ¡3 ¡3 1

3775  
permute
rows

2664
1 1 2 0
0 1 1 1
0 ¡3 ¡3 1
0 0 0 1

3775  R
3
+3R

2
)R

3

2664
1 1 2 0
0 1 1 1
0 0 0 4
0 0 0 1

3775  R
4
¡1

4
R
3
)R

4

2664
1 1 2 0
0 1 1 1
0 0 0 4
0 0 0 0

3775
Not a pivot in every column, hence the 4 vectors are dependent.

Moreover, a basis for W is

2664
1
2
0
3

3775;
2664
1
2
1
0

3775;
2664
0
1
1
1

3775, and dimW =3. �
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II Short answer part

Problem 5. Suppose A is a 5� 5 matrix with eigenvalue 0.

(a) What can you say about rank(A)?

(b) What can you say about rank(A) if the multiplicity of 0 is 1?

(c) What can you say about rank(A) if the multiplicity of 0 is 2?

Solution.

(a) Note that the 0-eigenspace of A is just null(A). We therefore know that dimnull(A)>1. Equivalently, we know
that rank(A)6 5¡ 1= 4.

(b) If the multiplicity of 0 is 1, then dimnull(A)= 1 and we know that rank(A)= 5¡ 1= 4.

(c) If the multiplicity of 0 is 2, then dimnull(A)2f1; 2g and we know that rank(A)2f3; 4g.

�

Problem 6. Produce a 2� 2 matrix which has 1-eigenvector
�
2
1

�
and 3-eigenvector

�
¡1
1

�
. Are there others?

Solution. Because we have two independent eigenvectors, such a matrix A is diagonalizable as A=PDP¡1, and we
know a possible choice of P and D, namely P =

�
2 ¡1
1 1

�
, D=

�
1 0
0 3

�
. Hence,

A=

�
2 ¡1
1 1

��
1 0
0 3

��
2 ¡1
1 1

�¡1
=

�
2 ¡3
1 3

��
2 ¡1
1 1

�¡1
=

�
2 ¡3
1 3

�
1
3

�
1 1
¡1 2

�
=
1
3

�
5 ¡4
¡2 7

�
;

and this is the unique 2� 2 matrix with 1-eigenvector
�
2
1

�
and 3-eigenvector

�
¡1
1

�
. �

Problem 7.

(a) What does it mean for two matrices A;B to be similar?

(b) Show that similar matrices have the same characteristic polynomial.

(c) Is it true that similar matrices have the same eigenvalues? Is it true that similar matrices have the same
eigenvectors? Explain.

Solution.

(a) It means that there exists an invertible matrix P such that A=PBP¡1.

(b) Let A and B be similar. Then A=PBP¡1 for some invertible matrix P , and

det(A¡�I) = det(PBP¡1¡�I)
= det(PBP¡1¡P�IP¡1)
= det(P (B ¡�I)P¡1)
= det(P )det(B ¡�I)det(P¡1)
= det(B ¡�I):
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In other words, A and B have the same characteristic polynomial.

(c) It is true that similar matrices have the same eigenvalues; that's because they have the same characteristic
polynomials (and the eigenvalues are just the roots of that same polynomial). However, similar matrices do
not typically have the same eigenvectors (think of any of the examples in which we diagonalized a matrix A as
A=PDP¡1; the matrices A and D are similar but they have di�erent eigenvectors). �

Problem 8. Let A be a n�n matrix. List at least �ve other statements which are equivalent to the statement �A is
invertible�.

Solution. Here are a few possibilities:

A is invertible.
() The RREF of A is In.
() A has n pivots.
() rank(A)= 0
() For every b2Rn, the system Ax= b has a unique solution.
() The system Ax=0 has a unique solution.
() dimnull(A) =0
() The columns of A are linearly independent.
() The rows of A are linearly independent.
() For every b2Rn, the system Ax= b has a solution.
() The columns of A span all of Rn.
() dim col(A)=n
() The rows of A span all of Rn.
() dim row(A)=n
() det(A)=/ 0
() 0 is not an eigenvalue of A.

Make sure that you can explain why each statement is equivalent to A being invertible. �

Problem 9. Determine whether each of the following �laws� is true for all (invertible) n�n matrices A;B.

(a) (AB)T =ATBT

(b) (AB)T =BTAT

(c) (AB)¡1=A¡1B¡1

(d) (AB)¡1=B¡1A¡1

Solution.

(a) Not true for all A;B.

(b) True.

(c) Not true for all A;B.

(d) True. (Can you demonstrate why?) �

Problem 10. Describe col(A); row(A); null(A) if A is an invertible n�n matrix.

Solution. Recall that A is invertible if and only if its RREF is In, the n�n identity matrix.

In particular, dim col(A)=n, dim row(A)=n, dimnull(A)= 0.
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Consequently, col(A)=Rn, row(A)=Rn, null(A)= f0g. �

Problem 11. You overhear a conversation during which someone explains that �matrix inverses are amazing because
they allow us to solve any linear system Ax=b by simply computing x=A¡1b�. What is your take on this statement?

Solution. It is true that, if A is invertible, then the linear system Ax= b has the unique solution x=A¡1b. There
is however several reasons the fellow you overheard is a little too enthusiastic about inverses in that context:

� A is not always invertible, so this is not a general method. Think for instance of the equations we need to solve
when �nding eigenvectors: the corresponding matrices are never invertible!

� Also, recall that, in order to be invertible, the matrix A needs to be square. Thus we cannot use inverses in
this way to solve any m�n system for which m=/ n.

� Thirdly, even if A is n � n and invertible, computing A¡1 is more work than solving Ax = b (in our usual
approach, we are doing the same steps of Gaussian elimination: for Ax= b, the augmented matrix [A j b] has
just one column besides A, whereas, for A¡1, the augmented matrix [A j I ] has n columns besides A.

(However, if we need to solve Ax= b for many di�erent right-hand sides b, then computing A¡1 will actually
be more e�cient.) �
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