Example 21. Consider the following linear system:

$$x_1 + 6x_2 + x_4 = 0$$

$$2x_1 + 12x_2 + x_3 - 2x_4 = 5$$

$$x_1 + 6x_2 - x_3 + 11x_4 + x_5 = 2$$

Gaussian elimination:

• The system is consistent.

Why? We were able to see that at the moment we had an echelon form. The echelon form had no row of the type $\begin{bmatrix} 0 & 0 & \dots & 0 & b \end{bmatrix}$ with $b \neq 0$, and so the system is consistent.

- The pivots are located in columns 1, 3, 4.
- Correspondingly, our free variables are x₂, x₅.
 We set x₂ = s₁ and x₅ = s₂, where s₁, s₂ can be any numbers (free parameters).
- Solving each equation for the pivot variable, we find that the general solution is:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -\frac{7}{6} - 6s_1 + \frac{1}{6}s_2 \\ \frac{s_1}{3} - \frac{2}{3}s_2 \\ \frac{7}{6} - \frac{1}{6}s_2 \\ s_2 \end{bmatrix}$$

5 Vectors and linear combinations

Example 22. We have already encountered **matrices** such as

$$\begin{bmatrix} 1 & 4 & 2 & 3 \\ 2 & -1 & 2 & 2 \\ 3 & 2 & -2 & 0 \end{bmatrix}.$$

Each column is what we call a (column) vector.

In this example, each column vector has 3 entries and so lies in \mathbb{R}^3 .

Example 23. A fundamental property of vectors is that vectors of the same kind can be **added** and **scaled**.

1		$\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$		5			x_1		$\begin{bmatrix} 7x_1 \\ 7x_2 \\ 7x_3 \end{bmatrix}$	
2	+	-1	=	1	,	$7 \cdot$	x_2	=	$7x_2$	
3		2		5			x_3		$7x_3$	

Example 24. Let us return to the system we solved at the beginning of this class. Note that we already wrote its general solution as a vector (in \mathbb{R}^5). Further note that we can also write it as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -\frac{7}{6} - 6s_1 + \frac{1}{6}s_2 \\ s_1 \\ \frac{29}{3} - \frac{2}{3}s_2 \\ \frac{7}{6} - \frac{1}{6}s_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} -\frac{7}{6} \\ 0 \\ \frac{29}{3} \\ \frac{7}{6} \\ 0 \end{bmatrix} + s_1 \begin{bmatrix} -6 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} \frac{1}{6} \\ 0 \\ -\frac{2}{3} \\ -\frac{1}{6} \\ 1 \end{bmatrix}.$$

Comment. The first vector on the right-hand side is a **particular solution** to our linear system (because that's the solution we get when choosing $s_1 = 0$ and $s_2 = 0$). Plug the other two vectors into our linear system and observe that they solve the equations if the right-hand sides are replaced with 0 (we will call this the **homogeneous system** corresponding to our linear system).

Adding and scaling vectors, the most general thing we can do is:

Definition 25. Given vectors $v_1, v_2, ..., v_m$ in \mathbb{R}^n and scalars $c_1, c_2, ..., c_m$, the vector

 $c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \ldots + c_m \boldsymbol{v}_m$

is a linear combination of $v_1, v_2, ..., v_m$.

The scalars $c_1, ..., c_m$ are the **coefficients** or weights.

Example 26. Express $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. **Solution.** Clearly, $\begin{bmatrix} 3 \\ -1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Example 27. Express $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Solution. We have to find c_1 and c_2 such that

$$c_1 \begin{bmatrix} 1\\3 \end{bmatrix} + c_2 \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 3\\-1 \end{bmatrix}.$$

This is the same as:

c_1	$+2c_{2}$	=	3
$3c_1$	$+c_{2}$	=	-1

Solving, we find $c_1 = -1$ and $c_2 = 2$. Indeed,

$$-\begin{bmatrix} 1\\3 \end{bmatrix} + 2\begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 3\\-1 \end{bmatrix}.$$