Sketch of Lecture 4

Thu, 8/25/2016

Example 21. Consider the following linear system:

r1+6x20+24 = 0
201+ 1225+ 2x3— 224 = 5
1+ 620 — 23+ 1les+25 = 2
Gaussian elimination:
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e The system is consistent.
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Why? We were able to see that at the moment we had an echelon form. The echelon form had no

row of the type [0 0 ... 0|b ] with b0, and so the system is consistent.

e The pivots are located in columns 1,3, 4.

e Correspondingly, our free variables are o, x5.

We set z2 =51 and x5 = s2, where s1, s can be any numbers (free parameters).

e Solving each equation for the pivot variable, we find that the general solution is:
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5 Vectors and linear combinations

Example 22. We have already encountered matrices such as
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Each column is what we call a (column) vector.

In this example, each column vector has 3 entries and so lies in IR3.
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Example 23. A fundamental property of vectors is that vectors of the same kind can be added
and scaled.

1 4 5 1 721
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3 2 5 T3 Tx3

Example 24. Let us return to the system we solved at the beginning of this class. Note that we
already wrote its general solution as a vector (in IR®). Further note that we can also write it as
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Comment. The first vector on the right-hand side is a particular solution to our linear system (because
that's the solution we get when choosing s1 =0 and sa=0). Plug the other two vectors into our linear system
and observe that they solve the equations if the right-hand sides are replaced with 0 (we will call this the
homogeneous system corresponding to our linear system).

Adding and scaling vectors, the most general thing we can do is:

Definition 25. Given vectors v1, Vs, ..., v, in IR™ and scalars ¢1, co, ..., ¢, the vector
C1V1 + C2V2 + ... + CUim
is a linear combination of vy, vo, ..., v,,.

The scalars ¢y, ..., ¢, are the coefficients or weights.
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Example 26. Express [ | } as a linear combination of [ (1) } and [ (1) }

Solution. Clearly, [ 3 }:3[ ! } 4[ 0 }
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Example 27. Express [ | } as a linear combination of [ :1)) } and [ f }

Solution. We have to find ¢; and ¢y such that
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c1 +2c¢o 3
3c1 +co = —1

This is the same as:

Solving, we find ¢c; =—1 and ¢, =2.
Indeed,
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