Definition 28. The span of vectors $v_1, v_2, ..., v_m$ is the set of all linear combinations

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_m \boldsymbol{v}_m,$$

where $x_1, x_2, ..., x_m$ can be any real numbers. We write span{ $v_1, v_2, ..., v_m$ } for this set.

A **span** is what we will call a **vector space**. It's a set of vectors which can be added and scaled without leaving that set.

Example 29. Vectors in span $\{v_1, v_2, v_3\}$ include:

- $3v_1 v_2 + 7v_3$,
- $\boldsymbol{v}_2 + \boldsymbol{v}_3$,

- $-\frac{1}{3}v_2$,
- 0 (the zero vector).

Example 30. A vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbb{R}^2 can be represented by an arrow from the origin to the point (x_1, x_2) .

But the position of the arrow doesn't matter. It can "start" anywhere.

Given $\boldsymbol{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\boldsymbol{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, graph \boldsymbol{x} , \boldsymbol{y} , $\boldsymbol{x} + \boldsymbol{y}$, $2\boldsymbol{x}$.

Example 31. Is $\begin{bmatrix} 1\\5 \end{bmatrix}$ in span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$?

Solution. The question is, can we find x_1 and x_2 such that $x_1 \begin{bmatrix} 2\\1 \end{bmatrix} + x_2 \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\5 \end{bmatrix}$. This is the vector form of: $\begin{array}{c} 2x_1 - x_2 = 1\\ x_1 + x_2 = 5 \end{array}$. We find $x_1 = 2$ and $x_2 = 3$. Indeed, $2 \begin{bmatrix} 2\\1 \end{bmatrix} + 3 \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\5 \end{bmatrix}$.

Example 32. We can think of the linear system $\begin{array}{c} 2x - y = 1 \\ x + y = 5 \end{array}$ in two different geometric ways.

Row picture.

- Each equation defines a line in \mathbb{R}^2 .
- Which points lie on the intersection of these lines?
- (2,3) is the (only) intersection of the two lines 2x y = 1and x + y = 5.

Column picture.

• The system can be written as

 $x \begin{bmatrix} 2\\1 \end{bmatrix} + y \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\5 \end{bmatrix}.$

- Which linear combination of $\begin{bmatrix} 2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$ produces $\begin{bmatrix} 1\\5 \end{bmatrix}$?
- (2,3) are the coeffs of the (only) such linear combination.

Example 33. Is every vector $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ in span $\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$? **Solution.** This is the same problem as earlier with $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ replaced with $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. The vector $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ is in the span if and only if the system $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ is consistent. One step of elimination: $R_2 - \frac{1}{2}R_1 \Rightarrow R_2 \begin{bmatrix} 2 & -1 \\ 0 & 3/2 \end{bmatrix} \begin{bmatrix} b_1 \\ \dots \end{bmatrix}$. The \dots is $b_1 - \frac{1}{2}b_2$ but, regardless, we see that the system is always consistent! (Why?!) Hence, the span contains all vectors. In other words, $\operatorname{span}\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} = \mathbb{R}^2$.

Example 34. Is $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ in span $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$? If so, write $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$ Solution. By "staring", we see that $2\begin{bmatrix} 1\\0\\0 \end{bmatrix} + 1\begin{bmatrix} -1\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$. So, yes!

Solution. $\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$ is in span $\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} \right\}$ if and only if there are x_1 and x_2 so that $x_1 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + x_2 \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$.

This is just the vector notation of the linear system with augmented matrix $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

This system is already in echelon form. It is consistent (by Theorem 19). Hence, our vector is in the given span. Moreover, by back substitution, we find $x_2 = 1$ and $x_1 = 2$. So, $2\begin{bmatrix} 1\\0\\0\end{bmatrix} + 1\begin{bmatrix} -1\\1\\0\end{bmatrix} = \begin{bmatrix} 1\\1\\0\end{bmatrix}$.

Example 35. Is
$$\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 3\\ 1 \end{bmatrix} \right\}$? If so, write $\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 3\\ 1 \end{bmatrix}$.

Solution. As in the previous example, $\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$ is in span $\left\{ \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 3\\ 1 \end{bmatrix} \right\}$ if and only if $\begin{bmatrix} 1 & 2 & 0\\ 1 & 3 & -1\\ 2 & 1 & 3 \end{bmatrix}$ is consistent.

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \xrightarrow{R_2 - R_1 \Rightarrow R_2}_{R_3 - 2R_1 \Rightarrow R_3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & -3 & 3 \end{bmatrix} \xrightarrow{R_3 + 3R_2 \Rightarrow R_3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

This system is consistent. Hence, our vector is in the given span. By back substitution, we find $x_2 = -1$ and $x_1 = 2$. This means $2 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$.

Example 36. Is
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix} \right\}$? If so, write $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ and $\begin{bmatrix} 2\\3\\1 \end{bmatrix}$.

Solution. Only the right-hand side of the linear system changed. The elimination steps are exactly the same! [This is important for applications. It is often the case that a system needs to be solved for many different right-hand sides.]

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 0 \\ 2 & 1 & 0 \end{bmatrix} \overset{R_2 - R_1 \Rightarrow R_2}{\underset{\longrightarrow}{}^{R_2 - 2R_1 \Rightarrow R_3}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & -3 & -2 \end{bmatrix} \overset{R_3 + 3R_2 \Rightarrow R_3}{\underset{\longrightarrow}{}^{R_3 + 3R_2 \Rightarrow R_3}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -5 \end{bmatrix}$$

This system is inconsistent. Hence,
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 is not in span $\left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \right\}.$

Armin Straub straub@southalabama.edu