Sketch of Lecture 11 Tue, 9/20/2016

Example 79. Consider the matrices $A = \begin{bmatrix} 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $1 \quad 2 \mid$ $0 \quad 1 \quad |$ and E -2 4 \rfloor 3 and $B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$. Cor $\left[\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array}\right]$. Compute: (a) $AB = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ $\begin{bmatrix} 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $1 \t2 \mid 1 \t2$ $0 \t1 \t\frac{1}{2} \t_0$ -2 4 \rfloor ^{\lfloor} \lfloor ⁰ R_{S} S_{S} $\begin{bmatrix} 3 & 0 \end{bmatrix}^{\top}$ $\left[\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array}\right] =$ (b) $(AB)^{T} =$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ (c) $B^T A^T = \begin{vmatrix} 1 & 3 \\ 2 & 0 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix}$ $\left[\begin{array}{cc} 1 & 3 \\ 2 & 0 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & -2 \\ 2 & 1 & 4 \end{array}\right] =$ (d) $A^T B^T = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} =$ What's that fishy smell?

Theorem 80. Let *A; B* be matrices of appropriate size. Then:

- $(A + B)^{T} = A^{T} + B^{T}$ obvious!
- $(AB)^T = B^T A^T$ (illustrated by the previous example)
- $(A^T)^{-1} = (A^{-1})^T$ Why? Do you see how this follows from the previous item?
- $\det(A^T) = \det(A)$

Example 81. Let *A* and *B* be $n \times n$ matrices with $\det(A) = a$ and $\det(B) = b$. Simplify $\det(3A^TAB^2A^{-1}).$

Solution. $\det(3A^TAB^2A^{-1}) = 3^n \det(A^TAB^2A^{-1}) = 3^n \det(A^T) \det(A) \det(B^2) \det(A^{-1}) = 3^n a b^2$

10 Linear independence

Definition 82. Vectors $v_1, v_2, ..., v_n$ are (linearly) dependent if

$$
x_1\boldsymbol{v}_1+x_2\boldsymbol{v}_2+...+x_n\boldsymbol{v}_n\hspace{-0.5mm}=\hspace{-0.5mm}\boldsymbol{0}
$$

for some x_i , not all zero. \blacksquare \bl

[There is always the trivial linear combination in which all coefficients are $0: x_1 = 0, x_2 = 0, ..., x_n = 0.$]

Otherwise, the vectors are (linearly) independent.

Example 83. Are the vectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $1 \mid 1$ $1 \vert , \vert 2 \vert$ $1 \perp 3$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $1 \mid -1$ $2 \mid$, | 1 3 J L 3 $\Big\}$, $\Big\lceil\begin{array}{c} -1 \ 1 \end{array}\Big\rceil$ linea 3] 3 \mid linearly independent?

Solution. We need to find out if

$$
x_1\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

has any solutions besides the trivial solution $x_1 = x_2 = x_3 = 0$. But that's just asking whether a linear system (which is obviously consistent; why?!) has a unique solution or whether there are infinitely many solutions. We therefore eliminate:

From the echelon form, we see that the system is consistent (it had to be!) and that it has infinitely many solutions (because there is a free variable).

Hence, our three vectors are not linearly independent.

Exhibit a linear dependence relation among the vectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $1 \mid 1$ $1 \mid, \mid 2 \mid$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Solution. We have already done the bulk of the work in the previous problem.

For a change, let us solve the system by back-substitution. $x_3 = s_1$ is free. Then, $x_2 = -2s_1$ and $x_1 =$ $-x_2 + x_3 = 3s_1$. This means that

 $1 \parallel 3 \parallel$

 $1 \mid -1$ $2 \mid, \mid 1$ 3 | 1 3

 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. 3]

3 ⁵.

This is a non-trivial linear combination of our three vectors which produces the zero vector.

Note that setting $s_1 = 1$ produces a nice linear combination, and that every other linear combination is just a multiple.

Example 84. With the minimum amount of work, decide whether the following vectors are linearly independent.

(a) $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $2 \mid -1$ $0 \mid, \mid 1$ $0 \parallel$ \parallel 0 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 7 \end{bmatrix}$ $0 \parallel$ [3] $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$ Solu 3 7 | Sol 3 3 **Solution.** These vectors are linearly independent.

Put them as columns of a matrix, and notice that this matrix is already in echelon form*:::*

(b) $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 9 \\ 6 \end{bmatrix}$ 3 | | 9 $2 \vert , \vert 6 \vert$ 1 \downarrow \downarrow 4 $\Bigg], \Bigg[\begin{array}{c} 9 \ 6 \end{array} \Bigg]$ Solt 9 6 | Sol 4 | 3 \parallel Solution. These vectors are linearly independent.

If they were dependent, then $x_1\begin{bmatrix} 3 \\ 2 \end{bmatrix}+x_2\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ 3 | 2 $+x_2$ 1 | | $\begin{bmatrix} 9 \\ 6 \end{bmatrix} = 0.5$ 9 6 | $=$ 0. 4] **3** = $\frac{3}{x}$ = 0. Since $x_1 \neq 0$ (why?), $\begin{bmatrix} 3 \\ 2 \end{bmatrix} = -\frac{x}{x}$ $3 \mid \cdot \cdot \cdot \cdot$ $2 | = -\frac{1}{2}$ $1 \quad \text{m}$ **1** [9 $\left] = -\frac{x_2}{x_1} \begin{bmatrix} 9 \\ 6 \\ 4 \end{bmatrix}$ so that $9 \mid \quad \quad \cdot$ $6 \mid$ so th 4] 3 \vert so that the second vector would be a multiple of the first. But it isn't! (Judging by the first entry, the second vector would have to be 3 times the first; but that clashes with the third entry.)

Moral. two vectors are linearly dependent \iff one is a multiple of the other

(c) $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $2 \mid \cdot \mid 0$ $0 \mid \cdot \mid 0$ 0 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\Bigg], \Bigg[\begin{array}{c} 0 \ 0 \end{array} \Bigg]$ Solt $0 \parallel$ $0 \parallel$ Sol $0 \quad \Box$ 3 \parallel Solution. These vectors are linearly dependent. For instance, $0 \begin{bmatrix} 2 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $2 \mid \cdot \cdot \mid$ 0 | $+7$ | $0 \quad \Box$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 | 0 $0 = 0$ 0 | $\begin{bmatrix} 0 \end{bmatrix}$ 1 [o] $\vert = \vert 0 \vert$ is a non- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\left\{ \begin{array}{c|c} 0 & \text{is an} \end{array} \right.$ $0 \parallel$ $0 \mid$ is a n $0 \quad \Box$ 3 $\frac{1}{2}$ is a non-trivial dependence relation (the coefficients are 0 and 7).

Moral. Whenever the zero vector is involved, the vectors are linearly dependent.