11 Vector spaces, bases, dimension

Example 88. (review from exam)

- If v_1, v_2, v_3 are linearly independent, then v_1 is in span $\{v_2, v_3\}$.
- If v_1, v_2, v_3 are linearly dependent, then we cannot say whether v_1 is in span{ v_2, v_3 }.

For instance, the vectors	$\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \text{ are dependent, and }$	$\begin{bmatrix} 1\\1\\0 \end{bmatrix} \text{ is in } \operatorname{span} \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}.$
Similarly, the vectors $\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$	$\left], \left[\begin{array}{c} 0\\1\\0\end{array}\right], \left[\begin{array}{c} 0\\2\\0\end{array}\right] \text{ are dependent, but } \left[\begin{array}{c} 1\\1\\0\end{array}\right]$] is not in span $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix} \right\}$.

Definition 89. A (vector) space is a set V of vectors that can be written as a span. That is, $V = \text{span}\{w_1, w_2, ...\}$ for some bunch of vectors $w_1, w_2, ...$

- Vectors $\boldsymbol{w}_1, \boldsymbol{w}_2, ...$ are called a **basis** of V if
 - (a) $V = \text{span}\{w_1, w_2, ...\}$ and
 - (b) $\boldsymbol{w}_1, \boldsymbol{w}_2, \dots$ are linearly independent.
 - The **dimension** of V is the number of elements in such a basis. (It is always the same.)

Example 90. Determine the dimension as well as several bases for the following vector spaces.

(a)
$$V = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$
 (b) $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix} \right\}$

Solution.

(a) Note that the vectors $\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ are not a basis of V because they are linearly dependent.

• Since
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} + \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, we have $V = \operatorname{span}\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$.

Thus, because they are also clearly independent, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ is a basis for V. Consequently, dim V = 2.

• By the same reasoning, $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ is a basis for V.

In fact, we can shorten the reasoning (more on this later): the two vectors are independent, and we know that $\dim V = 2$, which means it's the right number of vectors.

• Similarly,
$$\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ is a basis for V .
(b) $\begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}$ is a basis for W . Also, $\begin{bmatrix} 1\\1\\0\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\2\\0\\0\\0\\0\\0 \end{bmatrix}$ is a basis for W . But $\begin{bmatrix} 0\\1\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}$ is not a basis for W .
dim $W = 2$.

Note. Actually, these two are the same vector space: V = W.

Armin Straub straub@southalabama.edu **Theorem 91.** Let x_p be a particular solution to Ax = b. Then all solutions of Ax = b have the form $x = x_p + x_h$ where x_h is a solution to the associated **homogeneous system** Ax = 0.

Example 92. Find the general solution of

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}.$$

Solution. We eliminate:

$$\begin{bmatrix} 1 & 2 & 0 & -1 & | & 4 \\ -2 & -4 & 2 & 4 & | & -2 \end{bmatrix} \xrightarrow{R_2 + 2R_1 \Rightarrow R_2} \begin{bmatrix} 1 & 2 & 0 & -1 & | & 4 \\ 0 & 0 & 2 & 2 & | & 6 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2 \Rightarrow R_2} \begin{bmatrix} 1 & 2 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & 3 \end{bmatrix}$$

Our free variables are $x_2 = s_1$ and $x_4 = s_2$. We read off that $x_1 = 4 - 2s_1 + s_2$, $x_3 = 3 - s_2$. Hence, the general solution is

Note. In accordance with Theorem 91, the solution is given as a particular solution $\boldsymbol{x}_p = \begin{bmatrix} 4 & 0 & 3 & 0 \end{bmatrix}^T$ plus the general solution to the homogeneous equation $\begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Example 93. Find the general solution of

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}.$$

Solution. Note that there is one obvious solution: $\mathbf{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T$. (Another one is $\mathbf{x} = \begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix}^T$.) Hence, reusing our previous insight, the general solution is

$$\boldsymbol{x} = \begin{bmatrix} 4 - 2s_1 + s_2 \\ s_1 \\ 3 - s_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$
particular solution general solution to homogeneous equation.

Definition 94. null(A) (the null space of A) is the set of all solutions to Ax = 0.

Example 95. Find the dimension and a basis for $\operatorname{null}(A)$ with $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{bmatrix}$.

Solution. The general solution to $A\mathbf{x} = \mathbf{0}$ are all vectors $s_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$. In other words,

$$\operatorname{null}(A) = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix} \right\}.$$

The two vectors $\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 1 \end{bmatrix}$ are clearly independent, and so are a basis for null(A). So, dim null(A) = 2.

Armin Straub straub@southalabama.edu