11 Vector spaces, bases, dimension

Example 88. (review from exam)

- If v_1, v_2, v_3 are linearly independent, then v_1 is in span $\{v_2, v_3\}$.
- If v_1, v_2, v_3 are linearly dependent, then we cannot say whether v_1 is in span $\{v_2, v_3\}$.

Definition 89. A (vector) space is a set V of vectors that can be written as a span. That is, $V = \text{span}\{w_1, w_2, ...\}$ for some bunch of vectors $w_1, w_2, ...$

- Vectors $w_1, w_2, ...$ are called a **basis** of V if
	- (a) $V = \text{span}\{w_1, w_2, ...\}$ and
	- (b) w_1, w_2, \ldots are linearly independent.
- The **dimension** of V is the number of elements in such a basis. (It is always the same.)

Example 90. Determine the dimension as well as several bases for the following vector spaces.

$$
\text{(a)} \ \ V = \text{span}\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\} \tag{b)} \ \ W = \text{span}\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right\}
$$

Solution.

(a) Note that the vectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $1 \mid 0 \mid$ $1 \,|\, |\, 1 \,|\,$ 0][0] $\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 | | 1 | $1 \,|\, 0 \,|\,$ 0][0] $\left. \begin{array}{c} 1 \ 0 \end{array} \right]$ are n $1 \quad | \quad \Box$ $0 \vert$ are n $0 \quad \Box$ 3 $\frac{1}{2}$ are not a basis of V because they are linearly dependent.

• Since
$$
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$
, we have $V = \text{span}\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$.

Thus, because they are also clearly independent, $\left[\begin{array}{c} 0 \ 1 \end{array}\right], \left[\begin{array}{c} 1 \ 0 \end{array}\right]$ 0 | | 1 | $1 \,|\, 0 \,|\,$ 0 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\left[\begin{array}{cc} 1 \\ 0 \end{array}\right]$ is a l $1 \parallel \qquad \qquad$ $0 \mid$ is a t $\begin{array}{ccc} 0 & \end{array}$ 3 \vert is a basis for V . Consequently, $\dim V = 2$.

• By the same reasoning, $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ $1 \mid 0 \mid$ $1 \,|\, 1 \,|\,$ 0 \downarrow \downarrow 0 \downarrow $\left[\begin{array}{cc} 0 \\ 1 \end{array}\right]$ is a l $0 \mid \cdot$ 1 is a t $0 \downarrow$ 3 \vert is a basis for V .

In fact, we can shorten the reasoning (more on this later): the two vectors are independent, and we know that $\dim V = 2$, which means it's the right number of vectors.

\n- Similarly,
$$
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}
$$
, $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is a basis for V .
\n- (b) $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is a basis for W . Also, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ is a basis for W . But $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ is not a basis for W . $\text{dim } W = 2$.
\n

Note. Actually, these two are the same vector space: $V = W$.

Armin Straub Armin Straub $\bf 25$

Theorem 91. Let x_p be a particular solution to $Ax = b$. Then all solutions of $Ax = b$ have the form $x = x_p + x_h$ where x_h is a solution to the associated **homogeneous system** $Ax = 0$.

Example 92. Find the general solution of

$$
\left[\begin{array}{rrr} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{array}\right] \mathbf{x} = \left[\begin{array}{r} 4 \\ -2 \end{array}\right].
$$

Solution. We eliminate:

$$
\left[\begin{array}{ccc|c} 1 & 2 & 0 & -1 & 4 \ -2 & -4 & 2 & 4 & -2 \end{array}\right] \xrightarrow{R_2+2R_1 \Rightarrow R_2} \left[\begin{array}{ccc|c} 1 & 2 & 0 & -1 & 4 \ 0 & 0 & 2 & 2 & 6 \end{array}\right] \xrightarrow{\frac{1}{2}R_2 \Rightarrow R_2} \left[\begin{array}{ccc|c} 1 & 2 & 0 & -1 & 4 \ 0 & 0 & 1 & 1 & 3 \end{array}\right]
$$

Our free variables are $x_2 = s_1$ and $x_4 = s_2$. We read off that $x_1 = 4 - 2s_1 + s_2$, $x_3 = 3 - s_2$. Hence, the general solution is

Note. In accordance with Theorem [91,](#page-1-0) the solution is given as a particular solution $x_p = [4 \ 0 \ 3 \ 0]^T$ plus the general solution to the homogeneous equation $\begin{bmatrix} 1 & 2 & 0 & -1 \ -2 & -4 & 2 & 4 \end{bmatrix}$ $\boldsymbol{x} = \begin{bmatrix} 0 \ 0 \end{bmatrix}$.

Example 93. Find the general solution of

$$
\left[\begin{array}{rrr} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{array}\right] \mathbf{x} = \left[\begin{array}{r} 2 \\ -4 \end{array}\right].
$$

Solution. Note that there is one obvious solution: $x = [0 \ 1 \ 0 \ 0]^T$. (Another one is $x = [2 \ 0 \ 0 \ 0]^T$.) Hence, reusing our previous insight, the general solution is

$$
\boldsymbol{x} = \begin{bmatrix} 4-2s_1+s_2 \\ s_1 \\ 3-s_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}.
$$
particular solution general solution to homogeneous eq.

Definition 94. $null(A)$ (the **null space** of A) is the set of all solutions to $Ax = 0$.

Example 95. Find the dimension and a basis for $null(A)$ with $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{bmatrix}$.

Solution. The general solution to $Ax = 0$ are all vectors $s_1 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $\lceil -2 \rceil$ 1^{1} $1+$ s $\begin{vmatrix} -2 \\ 1 \\ 0 \end{vmatrix} + s_2$ $1 \Big| \perp e_2$ $0 \mid \cdot \cdot \cdot$ $0 \quad \Box$ 1 [1 $1 + s_2$ $\begin{matrix} 0 \\ 1 \end{matrix}$ $\begin{vmatrix} +s_2 & 0 \\ -1 & \end{vmatrix}$. In $21 - 1$ S^{\dagger} S^{U} S^{\dagger} . In $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ $1 \quad | \quad$ $\mathbf 0$ $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 3 \vert . In other words,

$$
\text{null}(A) = \text{span}\left\{ \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0 \end{array}\right], \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right] \right\}.
$$

The two vectors $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $1 \mid \cdot \mid 0$ $0 \mid \cdot \mid -1$ 0 | | 1 3.5 ± 1.3 $\lfloor . \rfloor$ $\lfloor . \rfloor$ $\lfloor . \rfloor$ and $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ are $\begin{array}{c|c} 0 & \text{are} \end{array}$ $1 - 1$ 1 | | 0 -1 ^{\vert} 1 | | 3 are clearl are clearly independent, and so are a basis for $\mathrm{null}(A)$. So, $\dim \mathrm{null}(A) = 2$.

Armin Straub Armin Straub $\bf 26$ straub@southalabama.edu 26