Example 101. Let A be a 3×5 matrix. For each of $\text{col}(A)$, $\text{row}(A)$ and $\text{null}(A)$ determine d so that the space is a subspace of $\mathbb{R}^d.$

 ${\sf Solution.}~~ {\rm col}(A)$ is a subspace of ${\mathbb R}^3.~{\rm row}(A)$ is a subspace of ${\mathbb R}^5.~{\rm null}(A)$ is a subspace of ${\mathbb R}^5.$

Example 102. Let $A = \begin{bmatrix} 2 & 4 & 0 & 8 \\ 3 & 6 & 2 & 22 \end{bmatrix}$. $\begin{bmatrix} 1 & 2 & 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$ $\begin{bmatrix} 3 & 0 & 2 & 22 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$ 1 2 0 4 2 4 0 8 \vert Fine $3\,6\,2\,22$ 4 8 0 16 3 \mid . Find a basis for $\operatorname{col}(A)$, $\operatorname{row}(A)$ and $\operatorname{null}(A)$.

Solution. We compute an echelon form of *A*:

We can now use Theorem [99](#page--1-0) to read off the bases we are interested in:

• The pivot columns are the first and third. Hence, a basis for $\operatorname{col}(A)$ is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ $|3|$ $|4|$ $1 \mid 0 \mid$ $2 \mid 0 \mid$ $3 \mid \mid 2 \mid$ 4] [0] $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ 4 $0 \parallel$ 0 | $2 \mid$ $0 \quad \Box$ $\frac{1}{2}$

[Make sure you see why it would be horribly wrong to take columns from the echelon form.]

 $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $1 \mid 0$ $2 \mid \cdot \mid 0$ $0 \mid \cdot \mid 2$ 4 | 10 1 [0] $|1 - 9|$ for $\left.\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}\right\}$ forn \vert \vert \vert forn 4 $0 \parallel$ $0 \mid$ form 2 | \sim 10 J 3 $\frac{1}{2}$ form a b form a basis for $\text{row}(A)$.

[Note that it would be horribly wrong to take the first two rows from A .]

• The general solution to
$$
Ax = 0
$$
 is $x = \begin{bmatrix} -2s_1 - 4s_2 \\ s_1 \\ -5s_2 \\ s_2 \end{bmatrix} = s_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} -4 \\ 0 \\ -5 \\ 1 \end{bmatrix}$.
\nHence, $\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 0 \\ -5 \\ 1 \end{bmatrix}$ are a basis for null(*A*).

Let A be $m \times n$, and let r be the **rank** of A , that is, r is the number of pivots.

- $\dim \mathrm{col}(A) = \dim \mathrm{row}(A) = r$
- $\dim \text{null}(A) = n r$

Example 103. The 4×4 matrix $A = \begin{bmatrix} 2 & 4 & 0 & 8 \\ 3 & 6 & 2 & 22 \end{bmatrix}$ 1204 1^2 4 0 8 $3\ 6\ 2\ 22$ 1 2 0 4 2408 from $3\,6\,2\,22$ 4 8 0 16 3 *i* from the from the previous example has rank $2.$

Indeed, $\dim \text{col}(A) = 2$, $\dim \text{row}(A) = 2$, $\dim \text{null}(A) = 4 - 2 = 2$ matches our computations.

Example 104. Let A be a 3×5 matrix of rank 2. Determine the dimensions of $\text{col}(A)$, $\text{row}(A)$ and $null(A)$.

Solution. dim col(A) = 2, dim row(A) = 2, dim null(A) = 5 - 2 = 3.

 $7₀1$

3

Example 105. Find a basis for $col(A)$, $row(A)$, $null(A)$ with $A = | 0 0 0 |$. $\lceil 1 \rceil$ 0 \lceil $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 1 1 0 $0 \quad 0 \quad 0$ 2 4 0 3 ⁵.

Solution. For this simple matrix, we can just "see" the following (make sure you do, too!):

A basis for $col(A)$ is: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$ $1 \mid 1$ $0 \mid, \mid 0$ 2 J L 4 ₋ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $1 \quad | \quad \Box$ $0 \parallel$ 4] 3 Why? Because these two vectors span and are clearly independent.

Note. We would select the same basis, if we computed an echelon form of *A* and applied Theorem [99](#page--1-0)[\(a\).](#page--1-1)

A basis for $row(A)$ is: $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $1 \mid 2 \mid$ $1 \mid$, | 4 $0 \perp 0$. $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $2 \mid$ $4 \mid$ $\begin{array}{ccc} 0 & \end{array}$ 3 $\frac{1}{2}$ Why? Again, because these two vectors span and are clearly independent.

Note. An echelon form of A is $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. By By Theorem [99](#page--1-0)[\(b\),](#page--1-2) an alternative basis for $\text{row}(A)$ is $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ $\left], \left[\begin{array}{c} 0 \\ 2 \\ 0 \end{array}\right].$ 3 ⁵. In fact, further computing the RREF, we would select as basis $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $\left], \left[\begin{array}{c} 0 \ 1 \ 0 \end{array} \right]$ (pro 3 ⁵ (probably the nicest basis for most purposes).

• A basis for $\operatorname{null}(A)$ is: $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $0 \parallel$ 0 | $\qquad \qquad$ 1

Why? We know that $\text{rank}(A) = 2$. Hence, dim $\text{null}(A) = 3 - 2 = 1$. Therefore, any nonzero vector in $\text{null}(A)$ will be a basis for $null(A)$. Clearly, $[0 \ 0 \ 1]^T$ is one such vector solving $Ax = 0$ (why?).

How little we actually know!

Q: *How fast can we solve N linear equations in N unknowns?*

Estimated cost of Gaussian elimination:

 $\begin{array}{ccc} \boxed{} & \ast & \ast & \cdots \end{array}$ $\begin{bmatrix} 0 & * & * & \cdots \\ 0 & 0 & * & * & * \end{bmatrix}$ 44.44 ■ * * … * ┃ ● $0 * * \cdots *$ $\begin{array}{c} \vdots & \vdots & \vdots \\ 0 & * & * \cdots & * \end{array}$ to create the zeros below the first pivot: \Rightarrow $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$ if the \bullet to create the zeros below the first pivot: \Longrightarrow on the order of N^2 operations \bullet if there is N pivots total: \implies on the order of $N \cdot N^2$ $\!=$ N^3 operations

3 5

- \bullet $\,$ A more careful count places the cost at ${\sim} \frac{1}{3} N^3$ operations.
- For large N , it is only the N^3 that matters. It says that if $N \rightarrow 10N$ then we have to work 1000 times as hard.

That's not optimal! We can do better than Gaussian elimination:

- Strassen algorithm (1969): $N^{\log_2 7} = N^{2.807}$
- Coppersmith-Winograd algorithm (1990): $N^{2.375}$
- ... Stothers–Williams–Le Gall (2014): $N^{2.373}$ (If $N \rightarrow 10N$ then we have to work 229 times as hard.)

 $\bf{\rm Is}$ $N^{2+(a\;{\rm tiny\;bit})}$ $\bf{\rm possible?}$ $\bf{\rm We\;don't\;known!}$ (People increasingly suspect so.) $\bf{\rm (Better\; than\;}\it{N^2$}$ is impossible; why?)

Good news for applications:

 Matrices typically have lots of structure and zeros which makes solving so much faster.