Example 106. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. What is rank(A)? Find a basis for col(A), row(A), null(A).

Solution. $\operatorname{rank}(A) = 2$. Hence, $\dim \operatorname{col}(A) = \dim \operatorname{row}(A) = 2$ and $\dim \operatorname{null}(A) = 3 - 2 = 1$. The dimension of $\operatorname{null}(A)$ is also called the **nullity** of A.

- A basis for col(A) is: $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1 \end{bmatrix}$
- A basis for row(A) is: $\begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$, $\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$
- A basis for null(A) is: $\begin{bmatrix} -2\\1\\0 \end{bmatrix}$

Example 107. Let $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is rank(A)? Find a basis for col(A), row(A), null(A).

Solution.

- A basis for col(A) is: $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$. In particular, rank(A) = 1.
- A basis for row(A) is: [1]
- $\dim \operatorname{null}(A) = 1 1 = 0$. A basis for $\operatorname{null}(A)$ is: {} (the empty set; this basis consists of 0 zero vectors)

Note. Make sure that all of these are evident to you, without computations.

If we insist on computing, the RREF of A is $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and, using Theorem 99, we end up with the same bases.

Example 108. Determine a basis for $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\3 \end{bmatrix} \right\}.$

Note that we have two choices because we can

- use Theorem 99(a) to determine a basis for $W = \operatorname{col}\left(\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix}\right)$, or
- use Theorem 99(b) to determine a basis for $W = \operatorname{col}\left(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ -1 & 1 & 3 \end{bmatrix}\right)$.

The first option will produce a basis from a subset of the original spanning vectors, while the second option will introduce new vectors (with some zeros). The amount of computation is the same.

Solution. Note that W = col(A) with $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix}$. Since $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \overset{R_2 - R_1 \Rightarrow R_2}{\underset{\longrightarrow}{R_3 - R_1 \Rightarrow R_3}} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \overset{R_3 - 2R_2 \Rightarrow R_3}{\underset{\longrightarrow}{K_3 - R_3 \Rightarrow R_3}} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$, a basis for W is $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$.

Note. Recall that bases are not at all unique. For instance, now that we know that W is 2-dimensional, we see that any pair of its original spanning vectors would form a basis (because each such pair is linearly independent).

Solution. Note that $W = \operatorname{row}(A)$ with $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ -1 & 1 & 3 \end{bmatrix}$. Since $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ -1 & 1 & 3 \end{bmatrix} \xrightarrow{R_2 - R_1 \Rightarrow R_2}_{R_3 + R_1 \Rightarrow R_3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \xrightarrow{R_3 - 2R_2 \Rightarrow R_3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix},$ a basis for W is $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}$.

Note. In this case, we get a basis that is not taken from the original spanning vectors. Here, we can still see how it is related to the basis we obtained earlier: $\begin{bmatrix} 1\\2\\3\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1\\2 \end{bmatrix} = \begin{bmatrix} 1\\0\\2\\2\\2 \end{bmatrix}$.

Recall that a basis of V is a list of vectors in V, which span V and which are linearly independent. The following is a rephrasing of that:

Vectors $\boldsymbol{v}_1, ..., \boldsymbol{v}_d$ in V are a basis of V. Every vector in V can be written uniquely as a linear combination of $v_1, ..., v_d$.

Why? "can be written" because a basis spans V. "uniquely" because basis vectors are linearly independent.

Example 109. Let W be as in the previous example. Is $\begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ in W? Is $\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$ in W?

Answer using each of the bases we have constructed. If a vector is in W, then write it in terms of the basis.

Solution. We use the basis α : $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix}$. [α is just a random name for this basis to distinguish it from the second one]

Since $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 3 & -2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 2 & -4 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix}$ is inconsistent, $\begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ is not in W.

On the other hand, $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 3 & -2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & 2 & -4 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ is consistent. So, $\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$ is in W.

 $\begin{bmatrix} 2\\0\\-2 \end{bmatrix} = 4 \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - 2 \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$. Instead of $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$, we can write $\begin{bmatrix} 4\\-2\\ \end{bmatrix}_{\alpha}$. Allows us to work with W as if it was \mathbb{R}^2 .

Solution. We use the basis β : $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\2 \end{bmatrix}$. We find, again, that $\begin{bmatrix} 2\\1\\-2 \end{bmatrix}$ is not in W, and that $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ is in W.

Do it! You can proceed exactly as before. But you can also try to exploit the extra 0 in the basis to avoid row operations

This time, $\begin{bmatrix} 2\\0\\-2 \end{bmatrix} = 2 \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} - 2 \begin{bmatrix} 0\\1\\2 \end{bmatrix}$. Instead of $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$, we can now write $\begin{bmatrix} 2\\-2\\-2 \end{bmatrix}_{\beta}$.