Sketch of Lecture 18

Example 119. Use your geometric understanding to find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution. $A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$ (i.e. multiplication with A is reflection through the line y = x)

- $A\begin{bmatrix} 1\\1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1\\1 \end{bmatrix} \rightsquigarrow x = \begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.
- $A\begin{bmatrix} 1\\ -1 \end{bmatrix} = -1 \cdot \begin{bmatrix} 1\\ -1 \end{bmatrix} \rightsquigarrow \boldsymbol{x} = \begin{bmatrix} 1\\ -1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = -1$.

Example 120. Verify that $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$. What is its eigenvalue? Solution. $A\mathbf{x} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} = 4\mathbf{x}$.

Hence, \boldsymbol{x} is an eigenvector of A with eigenvalue 4.

15.1 How to solve $Ax = \lambda x$

Example 121. (review) If B is invertible, what can you say about null(B)?

Solution. If *B* is invertible, then $B\mathbf{x} = \mathbf{0}$ has the unique solution $\mathbf{x} = \mathbf{0}$. Hence, $\operatorname{null}(B) = \{\mathbf{0}\}$. (In particular, $\dim \operatorname{null}(B) = 0$.) In other words, the null space is trivial.

Comment. If you write down a random $n \times n$ matrix, then, most likely, it will be invertible (none of the pivots are 0).

Key observation:

 $A\boldsymbol{x} = \lambda \boldsymbol{x}$ $\iff A\boldsymbol{x} - \lambda \boldsymbol{x} = \boldsymbol{0}$ $\iff (A - \lambda I)\boldsymbol{x} = \boldsymbol{0}$

This homogeneous system has a nontrivial solution if and only if $det(A - \lambda I) = 0$.

Recipe. To find eigenvectors and eigenvalues of A.

(a) First, find the eigenvalues λ by solving $\det(A - \lambda I) = 0$.

 $det(A - \lambda I)$ is a polynomial in λ , called the **characteristic polynomial** of A.

(b) Then, for each eigenvalue λ , find corresponding eigenvectors by solving $(A - \lambda I)\mathbf{x} = \mathbf{0}$. More precisely, we find a basis of eigenvectors for the λ -eigenspace null $(A - \lambda I)$.

Important comment. If A is $n \times n$, then $det(A - \lambda I)$ is a polynomial in λ of degree n. Such a polynomial has at most n roots (it has exactly n roots when working with complex numbers and counting multiplicity).

Hence, an $n \times n$ matrix A has at most n different eigenvalues!

Example 122. Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

In other words: Find the eigenvalues of A as well as bases for the corresponding eigenspaces. Solution.

- $A \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 \lambda & 1 \\ 1 & 3 \lambda \end{bmatrix}$ The characteristic polynomial of A is: $\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1$ Its roots are $\lambda_1 = 2$, $\lambda_2 = 4$, the eigenvalues of A.
- Find eigenvectors with eigenvalue $\lambda_1 = 2$: (we also call these 2-eigenvectors) Basis for $\operatorname{null}(A - \lambda_1 I) = \operatorname{null}\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\right)$ is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. So: $\boldsymbol{x}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_1 = 2$.

[All other eigenvectors with $\lambda = 2$ are multiples of \boldsymbol{x}_1 . null $\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right) = \operatorname{span} \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$ is the 2-eigenspace.]

• Find eigenvectors with eigenvalue $\lambda_2 = 4$: Basis for $\operatorname{null}(A - \lambda_2 I) = \operatorname{null}\left(\begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix}\right)$ is $\begin{bmatrix} 1\\ 1 \end{bmatrix}$. So: $\boldsymbol{x}_2 = \begin{bmatrix} 1\\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_2 = 4$.

[All other eigenvectors with $\lambda = 4$ are multiples of \boldsymbol{x}_2 . null $\left(\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \right) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ is the 4-eigenspace.]

Check it! We check our answer:

• $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \stackrel{\checkmark}{=} 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ • $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \stackrel{\checkmark}{=} 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Comment. In the first step, we needed to find the roots of $(3 - \lambda)^2 - 1$. There are two nice options here:

• From Calculus you already know one method for finding the roots of any quadratic polynomial, which usually goes by abc-formula or pq-formula. Using the abc-formula, we find that the two roots of $(3-\lambda)^2 - 1 = \lambda^2 - 6\lambda + 8$ are

$$\lambda_{1,2} = \frac{6 \pm \sqrt{36 - 32}}{2} = \frac{6 \pm 2}{2} \quad \rightsquigarrow \quad \lambda_1 = 2, \quad \lambda_2 = 4$$

• In this particular example, it is easier to notice that $(3 - \lambda)^2 - 1 = 0$, or $(3 - \lambda)^2 = 1$ has the solutions

$$3 - \lambda = \pm 1 \quad \rightsquigarrow \quad \lambda_1 = 2, \quad \lambda_2 = 4.$$

When working by hand, it is often worthwhile to watch out for such shortcuts before expanding the characteristic polynomial.