Sketch of Lecture 20 Tue, $11/01/2016$

Example 127. Find the eigenvalues of $A = \begin{vmatrix} 1 & 2 & -1 \\ 1 & 2 & -1 \end{vmatrix}$ $\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}$ 4 3 0 1 $\begin{array}{ccc|c} -1 & 2 & -1 \\ \hline \end{array}$ as wel $1 \quad 0 \quad 3$ 3 \vert as well as bases for the eigenspaces.

Solution. By expanding by the second column, we find that the characteristic polynomial is

$$
\begin{vmatrix} 3-\lambda & 0 & 1 \\ -1 & 2-\lambda & -1 \\ 1 & 0 & 3-\lambda \end{vmatrix} = (2-\lambda)\begin{vmatrix} 3-\lambda & 1 \\ 1 & 3-\lambda \end{vmatrix} = (2-\lambda)[(3-\lambda)^2 - 1] = (2-\lambda)(\lambda - 2)(\lambda - 4).
$$

Since $\lambda = 2$ is a double root, we say that it has (algebraic) multiplicity 2. Hence, the eigenvalues are $\lambda = 2$ (with multiplicity 2) and $\lambda = 4$.

• For
$$
\lambda = 4
$$
, the eigenspace null $\left(\begin{bmatrix} -1 & 0 & 1 \\ -1 & -2 & -1 \\ 1 & 0 & -1 \end{bmatrix} \right)$ has basis $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.
\n• For $\lambda = 2$, the eigenspace null $\left(\begin{bmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix} \right)$ has basis $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

Example 128. Consider a fixed population of people with or without a job. Suppose that, each year, 50% of those unemployed find a job while 10% of those employed lose their job. What is the unemployment rate in the long term equilibrium? Solution.

 x_t : proportion of population employed at time t (in years)

*y*_{*t*}: proportion of population unemployed at time *t* [Note that $x_t + y_t = 1$.]

 $\begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix} = \begin{bmatrix} 0.9x_t + 0.5y_t \\ 0.1x_t + 0.5y_t \end{bmatrix} = \begin{bmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix}$ 0.1 0.5 $\left| \begin{array}{c} y_t \end{array} \right|$ $\left[\begin{array}{c} x_t \\ y_t \end{array}\right]$

The matrix $\left[\begin{smallmatrix} 0.9 & 0.5\ 0.1 & 0.5 \end{smallmatrix}\right]$ is the transition matrix of this dynamical system, because it describes the transition from time t to time $t+1$. This particular one is a Markov matrix (or stochastic matrix): its columns add to 1 and it has no negative entries.

 $\left[\begin{array}{c} x_{\infty} \end{array}\right]$ is an equi y_{∞} \int ¹ 2 2 1 2 1 $\left| \frac{1}{2} \right|$ $\Big]$ is an equilibrium if $\Big[\begin{array}{c} x_{\infty}\ y_{\infty} \end{array}\Big]=\Big[\begin{array}{cc} 0.9 & 0.5 \ 0.1 & 0.5 \end{array}\Big] \Big[\begin{array}{c} x_{\infty}\ y_{\infty} \end{array}\Big].$ In other $\Big]$. In other words, $\Big[\begin{array}{c} x_{\infty}\ y_{\infty} \end{array}\Big]$ is an eige $\big]$ is an eigenvector with eigenvalue $1.$

The 1-eigenspace is $\operatorname{null}(\left[\begin{array}{cc} -0.1 & 0.5 \ 0.1 & -0.5 \end{array} \right])$, which has basis $\left[\begin{array}{c} 5 \ 1 \end{array} \right]$.

Since $x_{\infty} + y_{\infty} = 1$, we conclude that $\left[\begin{array}{c} x_{\infty} \\ y_{\infty} \end{array} \right] = \frac{1}{5+1} \left[\begin{array}{c} 5 \\ 1 \end{array} \right] = \left[\begin{array}{c} 5/6 \\ 1/6 \end{array} \right].$.

Hence, the unemployment rate in the long term equilibrium is $1/6 \approx 16.7\%$.

[Ponder about why this is a reasonable value!]

Comment. What's the other eigenvalue of the transition matrix? No need to compute the characteristic polynomial: we can easily see that it is 0.4 because the product of the eigenvalues equals the determinant! The 0.4 -eigenspace is spanned by $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Advanced comment. Will the employment and unemployment rate always stabilize (and thus approach the long term equilibrium)? Yes! This is a consequence of the other eigenvalue of the transition matrix satisfying $|0.4| < 1$. If we start in state $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = a \begin{bmatrix} 5 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then $\begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{bmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{bmatrix}^n \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = 1^n \cdot a \begin{bmatrix} 5 \\ 1 \end{bmatrix} + a \begin{bmatrix} 1 \\ -1 \end{$ $(0.4)^n \cdot b \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ as $\overrightarrow{n \rightarrow} \infty$ $a \begin{bmatrix} 5 \\ 1 \end{bmatrix}$.

Armin Straub straub@southalabama.edu ³⁹