
Sketch of Lecture 24 Tue, 11/22/2016

Review. An n�nmatrix A is diagonalizable as A=PDP¡1 if and only if it has n independent
eigenvectors.
That's guaranteed to be the case if A has n di�erent eigenvalues. Why?!

Diagonal matrices are very easy to work with.
For instance, it is easy to compute their powers:

Example 136. If A=

24 2 0 0
0 3 0
0 0 4

35, then what is An.

Solution. We compute directly that A2=

264 22

32

42

375. It then becomes obvious that An=
24 2n

3n

4n

35.
Comment. As done above, it is common to leave zero entries of a matrix blank to emphasize the structure
of that matrix.

Example 137. Diagonalize A=
�

0 ¡2
¡4 2

�
.

Solution. This is the example from last class. A has eigenvalues ¡2; 4.
[We can already tell that A is diagonalizable! That's because the 2 � 2 matrix A will have 2 independent
eigenvectors; one for each eigenvalue.]

A ¡2-eigenvector is
�
1
1

�
, and a 4-eigenvector is

�
1
¡2

�
.

[Why is it clear that the eigenspaces have dimension 1?!]

Hence, if we set P =
�
1 1
1 ¡2

�
(eigenvectors) and D=

�
¡2 0
0 4

�
(eigenvalues), then AP =PD.

That is, we have the diagonalization A=PDP¡1.

Check that we got it right. We can check this by verifying AP =PD:�
0 ¡2
¡4 2

��
1 1
1 ¡2

�
=

�
1 1
1 ¡2

��
¡2

4

�
Alternatives. There is many other ways to diagonalize the matrix A.

� For instance, P =
�

1 1
¡2 1

�
and D=

�
4 0
0 ¡2

�
works just as well.

(We just changed the order of the eigenvectors.)

� We could also select di�erent eigenvectors: for instance,
�
¡1
2

�
as our 4-eigenvector.

In that case, we would get P =
�
1 ¡1
1 ¡2

�
and D=

�
¡2 0
0 4

�
, which, again, works just as well.

What's the point? Here is one: note that if A=PDP¡1, then A2=(PDP¡1)(PDP¡1)=PD2P¡1.
Likewise, An=PDnP¡1.
But Dn is super easy to compute since

�
¡2 0
0 4

�n
=

�
(¡2)n 0
0 4n

�
.

Using
�
1 1
1 ¡2

�¡1
=
1

3

�
2 1
1 ¡1

�
, we therefore have

An=
�
1 1
1 ¡2

��
(¡2)n 0
0 4n

�
1

3

�
2 1
1 ¡1

�
=
1

3

�
(¡2)n 4n

(¡2)n ¡2 � 4n
��
2 1
1 ¡1

�
=
1

3

�
2 � (¡2)n+4n (¡2)n¡ 4n
2 � (¡2)n¡ 2 � 4n (¡2)n+2 � 4n

�
For large n, we see that An� 4n

3

�
1 ¡1
¡2 2

�
.

For instance. A5=
�

320 ¡352
¡704 672

�
� 45

3

�
0.938 ¡1.031
¡2.063 1.967

�
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Just for fun and curiousity!
Recall that we introduced the dimension of a vector space as the number of vectors in a/any
basis. In Calculus, on the other hand, you learn about curves (1-dimensional), surfaces (2-
dimensional) and solids (3-dimensional).
The reason that Linear Algebra is relevant for curved objects like surfaces is that locally these (typically) do
look �at (like a plane), so that our tools apply at least locally.

What should a 1.5 dimensional thing look like?
Something between a curve and a surface:::
(Note that our linear algebra approach to dimension is not helpful.)

Here is a candidate.

Continuing this process, results in the Koch snow�ake, a fractal:

� Its perimeter is in�nite!
Why? At each iteration, the perimeter gets multiplied by 4/3.

� The table below indicates that its boundary has dimension log3(4)� 1.262!!

the e�ect of zooming in by a factor of 3
�3 d=1= log3(3)

�9 d=2= log3(9)

�4 d= log3(4)� 1.262

Does this have any practical relevance? Surprisingly, yes!
Have you ever wondered why perimeters of countries are missing from wikipedia? Or, why the coastline of
the UK is listed as 11,000 miles by the UK mapping authority but 7,700 miles by the CIA Factbook?
Some of the fun can be found at: https://en.wikipedia.org/wiki/Coastline_paradox
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