
Notes for Lecture 13 Tue, 10/6/2020

Example 113. Recall that Fermat's last theorem states that xn+ yn= zn does not have any
solutions in positive integers if n> 3.
However, in a Simpson's episode, Homer discovered that

178212+ 184112 �=� 192212:

If you check this on an old calculator it might confirm the equation. However, the equation is not correct, though
it is �nearly�: 178212+ 184112− 192212�−7.002 �1029.
Why would that count as �nearly�? Well, the smallest of the three numbers, 178212� 1.025 � 1039, is bigger
by a factor of more than 109. So the difference is extremely small in comparison.
Relative errors. If you estimate x with y, the absolute error is jx − y j. However, for many applications, the

relative error
������x− y

x

������ is much more important.

Check! Show that Homer is wrong by hand by looking at this modulo 13. (Though modulo 2 is even easier!)

Solution. By Fermat's little theorem, we have x12� 1 (mod13) for all x not divisible by 13. Our numbers are
not divisible by 13. Hence, 178212+ 184112� 2 (mod13) but 192212� 1 (mod13), so they cannot be equal.

http://www.bbc.com/news/magazine-24724635

12 Euler's theorem

Theorem 114. (Euler's theorem) If n> 1 and gcd (a; n)= 1, then a�(n)� 1 (modn).

Before, we prove Euler's theorem, let us review Fermat's little theorem, which is the special case of prime n.
Fermat's little theorem. If p is prime and p - a, then ap−1� 1 (mod p).

Proof. (Fermat's little theorem) The first p− 1 multiples of a,

a; 2a; 3a; :::; (p− 1)a

are all different modulo p. Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p− 1 modulo p. Thus,

a � 2a � 3a � ::: � (p− 1)a� 1 � 2 � 3 � ::: � (p− 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap−1� 1 (mod p). �

Proof. (Euler's theorem) Let m1; m2; :::; md be the values among f1; 2; :::; n − 1g which are coprime to n.
Note that d= �(n) and that these are precisely the invertible residues modulo n. Observe that the residues

am1; am2; am3; :::; amd

are all invertible (why?!) modulo n and different from each other.
Consequently, these values must be congruent (in some order) to the values m1;m2; :::;md modulo n. Thus,

am1 �am2 �am3 � ::: � amd�m1 �m2 �m3 � ::: �md (modn):

Cancelling the common factors (allowed because the mi are invertible modn), we get ad� 1 (modn). �
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Example 115. Compute 37101 (mod35).
Solution. First, note that 37101� 2101 (mod35).
�(35) = �(5)�(7) = 4 � 6= 24. Since gcd (2; 35) = 1, we obtain that 224� 1 (mod35) by Euler's theorem (in
other words, we can reduce modulo 24 in the exponent).
Since 101� 5 (mod24), we have 2101� 25= 32�−3 (mod35).

Example 116. What are the last two (decimal) digits of 34242?

Solution. We need to determine 34242 (mod100). �(100) = �(22) � �(52)= (4− 2)(25− 5)= 40.
Since gcd (3; 100)= 1 and 4242� 2 (mod40), Euler's theorem shows that 34242� 32=9 (mod100).
Therefore the last two digits are 09.

Example 117. Compute 7102 (mod60).
Solution. �(60) = �(22)�(3)�(5) = 2 � 2 � 4 = 16. Since gcd (7; 60) = 1, we obtain that 716 � 1 (mod60) by
Euler's theorem. Since 102� 6 (mod16), we have 7102� 76 (mod60).

It then follows from 72�−11, 74� (−11)2� 1 (mod60) that 7102� 76� 74 � 72� 1 � (−11)�−11 (mod60).

13 Multiplicative order and primitive roots

Example 118. (warmup) Compute the powers of 2 modulo 11.
Solution. 20= 1; 21= 2; 22= 4; 23= 8; 24� 5; 25� 2 � 5 = 10; 26� 2 � 10� 9; 27� 2 � 9� 7; 28� 2 � 7� 3;
29� 2 � 3=6; 210� 2 � 6� 1, and now the numbers we get will repeat:::
Note. By Fermat's little theorem, it was clear from the beginning that 210 � 1 (mod11). Our computation
shows that k=10 is the smallest exponent such that 2k�1 (mod11). We therefore say that 2 hasmultiplicative
order 10 modulo 11.
Also notice that the values 20; 21; :::; 29, together with 0, form a complete set of residues modulo 11. For that
reason, we say that 2 is a primitive root modulo 11.

Definition 119. The multiplicative order of an invertible residue a modulo n is the smallest
positive integer k such that ak� 1 (modn).

Definition 120. If the multiplicative order of an residue a modulo n equals �(n) [in other words,
the order is as large as possible], then a is said to be a primitive root modulo n.

A primitive root is also referred to as a multiplicative generator (because the products of a, that is, 1; a; a2;
a3; :::, produce all [�(n) many] invertible residues).

Example 121. Determine the orders of each (invertible) residue modulo 7. In particular, determine
all primitive roots modulo 7.
Solution. We will develop more tools next time. For now, let us just consider each residue individually and
determine, by brute-force, what its order is.

� Since 22=4, 23� 1, the order of 2 is 3.

� Since 32=2, 33� 6, 34� 4, 35� 5, 36� 1, the order of 3 is 6.

Proceeding likewise for the other residues, we find:

residue 1 2 3 4 5 6
order 1 3 6 3 6 2

In particular, the primitive roots are 3 and 5.
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Notes for Lecture 14 Thu, 10/8/2020

Review. x (modn) is a primitive root.

() The (multiplicative) order of x (modn) is �(n). (That is, the order is as large as possible.)

() x; x2; :::; x�(n) is a list of all invertible residues modulo n.

Lemma 122. If ar� 1 (modn) and as� 1 (modn), then agcd(r;s)� 1 (modn).

Proof. By Bezout's identity, there are integers x; y such that xr+ ys= gcd (r; s).

Hence, agcd(r;s)= axr+ys= axrays= (ar)x(as)y� 1 (modn). �

Corollary 123. The multiplicative order of a modulo n divides �(n).

Proof. Let k be the multiplicative order, so that ak� 1 (modn). By Euler's theorem a�(n)� 1 (modn). The
previous lemma shows that agcd(k;�(n))�1 (modn). But since the multiplicative order is the smallest exponent,
it must be the case that gcd (k; �(n))= k. Equivalently, k divides �(n). �

Example 124. Compute the multiplicative order of 2 modulo 7; 11; 9; 15. In each case, is 2 a
primitive root?

Solution.

� 2 (mod7): 22� 4; 23� 1. Hence, the order of 2 modulo 7 is 3.
Since the order is less than �(7)= 6, 2 is not a primitive root modulo 7.

� 2 (mod 11): Since �(11) = 10, the only possible orders are 2; 5; 10. Hence, checking that 22 �/ 1 and
25�/ 1 is enough to conclude that the order must be 10.
Since the order is equal to �(11)= 10, 2 is a primitive root modulo 11.

� 2 (mod9): Since �(9)= 6, the only possible orders are 2; 3; 6. Hence, checking that 22�/ 1 and 23�/ 1
is enough to conclude that the order must be 6. (Indeed, 22� 4, 23� 8, 24� 7, 25� 5, 26� 1.)
Since the order is equal to �(9)=6, 2 is a primitive root modulo 9.

� The order of 2 (mod15) is 4 (a divisor of �(15) = 8).
2 is not a primitive root modulo 15. In fact, there is no primitive root modulo 15.

Comment. It is an open conjecture to show that 2 is a primitive root modulo infinitely many primes. (This is
a special case of Artin's conjecture which predicts much more.)
Advanced comment. There exists a primitive root modulo n if and only if n is of one of 1; 2; 4; pk; 2pk for
some odd prime p.

Example 125. Is there a primitive root modulo 8?

Solution. Since �(8)=8− 4= 4, the question is whether there is a residue of order 4.
The invertible residues are �1;�3. Obviously, 1 has order 1 and −1 has order 2. Since (�3)2� 1 (mod8), the
residues �3 have order 2 as well. There is no primitive root.
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Lemma 126. Suppose x (modn) has (multiplicative) order k.

(a) xa� 1 (modn) if and only if k ja.

(b) xa�xb (modn) if and only if a� b (mod k).

(c) xa has order k

gcd (k; a) .

Proof.

(a) �=)�: By Lemma 122, xk�1 and xa�1 imply xgcd(k;a)�1 (modn). Since k is the smallest exponent,
we have k= gcd (k; a) or, equivalently, k ja.
�(=�: Obviously, if kja so that a= kb, then xa=(xk)b� 1 (modn).

(b) Since x is invertible, xa�xb (modn) if and only if xa−b� 1 (modn) if and only if k j(a− b).

(c) By the first part, (xa)m� 1 (modn) if and only if kjam. The smallest such m is m=
k

gcd (k; a)
. �

Example 127. Redo Example 121, starting with the knowledge that 3 is a primitive root.

That is, determine the orders of each residue modulo 7.

Solution.

residues 1 2 3 4 5 6

3a 30 32 31 34 35 33

order= 6
gcd (a; 6)

6
6

6
2

6
1

6
2

6
1

6
3
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