
Notes for Lecture 20 Thu, 11/5/2020

19 Continued fractions

Definition 164. A continued fraction is a fraction of the form

a0+
1

a1+
1

a2+
1

a3+ :::

;

with a1; a2; ::: positive. Written as [a0; a1; a2; :::].

Called simple if all the ai are integers.

Example 165. Express 5

3
as a simple continued fraction.

Solution. 5

3
=1+

2

3
=1+

1

3/2
=1+

1

1+
1

2

= [1; 1; 2]

Writing the final 2 as 1+ 1

1
, we also have 5

3
=1+

1

1+
1

2

=1+
1

1+
1

1+
1

1

= [1; 1; 1; 1].

More generally. If an> 1, we always have [a0; a1; a2; :::; an] = [a0;a1; a2; :::; an− 1; 1].
Comment. Apart from these two variations, the simple continued fraction for 5

3
is unique.

Note that we are used to a similar ambiguity when dealing with terminating decimal expansions: for instance,
1.25000000:::= 1.24999999:::
A slight variation. It follows from the above that 3

5
=0+

1

5/3
=0+

1

1+
1

1+
1

2

= [0; 1; 1; 2].

More generally, we always have that, if x= [a0; a1; a2; :::] with a0> 0, then 1

x
= [0; a0; a1; a2; :::].

Example 166. Express 43
19 as a simple continued fraction.

Solution. 43
19 =2+

5

19 =2+
1

19/5 =2+
1

3+
4

5

=2+
1

3+
1

5/4

=2+
1

3+
1

1+
1

4

= [2; 3; 1; 4]

Again, also, 43
19
= [2; 3; 1; 4]=

h
2; 3; 1; 3+

1

1

i
= [2; 3; 1; 3; 1].

Super important observation. We have done this computation before (in a different guise)!

By the Euclidean algorithm: 43= 2 � 19+5, 19= 3 � 5+ 4, 5= 1 � 4+1, 4= 4 � 1+0.

Example 167. Evaluate [2; 3], [2; 3; 4], and [2; 3; 4; 5].

Solution.
[2; 3] = 2+

1

3
=
7

3
� 2.333

[2; 3; 4]= 2+
1

3+
1

4

=2+
4

13
=

30
13
� 2.308

[2; 3; 4; 5]= 2+
1

3+
1

4+
1

5

=2+
1

3+
5

21

=2+
21
68
=

157
68
� 2.309

Definition 168. The convergents Ck of [a0; a1; a2; :::] are the truncated continued fractions
C0= a0, C1= [a0; a1], C2= [a0; a1; a2], :::, Ck= [a0; a1; a2; :::; ak], :::
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Theorem 169. The convergents Ck of a simple continued fraction [a0;a1; a2; :::] always converge
to a value x in the following alternating fashion

C0<C2<C4< ��� x ���<C5<C3<C1:

We simply write x= [a0; a1; a2; :::] for that value.

If the continued fraction is finite, that is x= [a0; a1; a2; :::; an], then we only have the convergents C0; C1; :::;
Cn and Cn= x.

Proof. From

C0= a0; x= a0+
1

a1+
1

a2+
1

a3+ :::

; C1= a0+
1
a1
;

we see that C0 is less than x, as well as less than all other convergents (because all of these equal a0 plus
something positive). Similarly, C1 is larger than x, as well as larger than all other convergents.
The full claim then follows by, likewise, looking at [a1; a2; a3:::] in place of [a0; a1; a2; :::].
See Theorem 15.4 in our book for full details. �

Theorem 170. (representing a real number as a simple continued fraction)

� An irrational number x has a unique representation as a simple continued fraction. This
continued fraction is infinite.

� A rational number x has exactly two representations as a simple continued fraction. Both
are finite (one ends in a 1 and the other doesn't).

Proof. Let x be a positive real number. Let us think about how a continued fraction for x has to look like.
[The argument for negative x is essentially the same. For negative x, a0 will be negative but the remainder and
the other digits are positive.]
As in Theorem 169, we have C06x6C1 where C0= a0 and C1= a0+

1

a1
6 a0+1.

Hence, a06x6 a0+1 which means that a0 has to be the integer a0= bxc.

(unless) Well, unless x is an integer itself, in which case we have the two possibilities a0=x or a0=x− 1. But
in that special case, we are done: the continued fraction for x is finite and there are exactly the two
representations x= [x] and x= [x− 1; 1].

So, x= a0+
1

y
with y=

1

x− a0
> 0, and the continued fraction for x is x= [a0; b0; b1; :::] provided that y has

the continued fraction y = [b0; b1; :::]. We now repeat our argument, starting with the positive real number y
(so that b0= byc, :::).
There are two possibilities:

� The process stops along the way because the number we are looking at is an integer (the �unless� case).
In that case, we get exactly two finite simple continued fractions for x (one of which ends in 1).
This happens if and only if x is rational (from the Euclidean algorithm we know that every rational number
has a finite simple continued fraction; conversely, a finite simple continued fraction necessarily represents
a rational number).

� The process continues indefinitely. In that case, we get a (unique) infinite simple continued fraction for
x. (By Theorem 169, this continued fraction indeed converges to x.) �

Review. Euler's number e= 2.71828182846::: and its significance (differential equations, com-
pound interest)
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Notes for Lecture 21 Tue, 11/10/2020

Example 171. Express 55
24 as a simple continued fraction.

Solution. By the Euclidean algorithm: 55= 2 �24+7, 24= 3 � 7+3, 7= 2 � 3+ 1, 3= 3 � 1+0.

Hence, 55
24 = [2; 3; 2; 3].

Example 172. Determine the first few digits of the simple continued fraction of e.
Solution. e= 2 :71828182846:::.

e=2+
1

1/0.7182::: = [2; a1; a2; :::] where [a1; a2; :::] = 1/0.7182:::= 1 :3922:::.

1/0.3922:::= 2 :5496:::, 1/0.5496:::= 1 :8194:::, 1/0.8194:::= 1 :2205:::, 1/0.2205:::= 4 :5356:::

Hence, e=[2; 1;2;1;1;4; :::]. Computing further, e=[2;1;2;1;1;4;1;1;6;1;1;8; :::] and the pattern continues.
Note. Assuming that the pattern does continue, this proves that e is irrational!

Example 173.

(a) Evaluate the first 4 convergents of [2;3;2;3;2; :::] (and then, using the next result, compute
3 more convergents).

(b) Which number is represented by [2; 3; 2; 3; 2; :::]?

Solution.

(a) C0=2

C1= [2; 3]= 2+
1

3
=
7

3
� 2.333

C2= [2; 3; 2]= 2+
1

3+
1

2

=2+
2

7
=

16
7
� 2.286

C3= [2; 3; 2; 3]= 2+
1

3+
1

2+
1

3

=
55
24
� 2.292

Using the next result, we compute the convergents Cn=
pn
qn

as follows:

n −2 −1 0 1 2 3 4 5 6
an 2 3 2 3 2 3 2
pn 0 1 2 7 16 55 126 433 992
qn 1 0 1 3 7 24 55 189 433

Cn
2
1

7
3

16
7

55
24

126
55

433
189

992
433

(b) Write x= [2; 3; 2; 3; 2; :::]. Then, x=2+
1

3+
1

2+
1

3+ :::

=2+
1

3+
1

x

.

The equation x=2+
1

3+
1

x

simplifies to x− 2= x

3x+1
.

Further (note that, clearly x=/ −1

3
so that 3x+1=/ 0) simplifies to (x−2)(3x+1)=x or 3x2−6x−2=0,

which has the solutions x= 6� 36+ 24
p

6
=1� 5

3

q
.

Since 1+ 5

3

q
� 2.291 and 1− 5

3

q
�−0.291, we conclude that [2; 3; 2; 3; 2; :::] = 1+

5

3

q
.

Advanced comment. The fractions pn
qn

are always reduced! Can you see how to conclude that gcd (pn; qn)= 1

from the relation pnqn−1− pn−1qn=(−1)n (which can be proved by induction)?
We can see this relation quite nicely in the above table because pnqn−1− pn−1qn is a 2� 2 determinant taken
from the rows containing pn and qn:�������� 0 1

1 0

��������=−1; �������� 1 2
0 1

��������=1;

�������� 2 7
1 3

��������=−1; �������� 7 16
3 7

��������=1;

�������� 16 55
7 24

��������=−1; :::
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Theorem 174. The kth convergent of the continued fraction [a0; a1; a2; :::] is

Ck=
pk
qk
;

where pk and qk are characterized by

pk= akpk−1+ pk−2
with p−2=0; p−1=1

and qk= akqk−1+ qk−2
with q−2=1; q−1=0

:

Proof. We will prove the claim by induction on k. (More on that technique next time!)

First, we check the two base cases k=0, k=1 directly: C0= a0 and C1= a0+
1

a1
=
a0a1+1

a1
. In other words,

p0= a0, q0=1 and p1= a0a1+1, q1= a1. This matches with the values from the recursion.
Next, we assume that the theorem is true for k=0; 1; :::; n. In particular,

Cn= [a0;a1; a2; :::; an] =
pn
qn

=
anpn−1+ pn−2
anqn−1+ qn−2

;

for all values of a0; a1; :::; an. Note that Cn+1=[a0;a1; a2; :::; an; an+1]=
h
a0;a1; a2; :::; an+

1

an+1

i
. Replacing

an with an+
1

an+1
, we therefore obtain

Cn+1=

�
a0; a1; a2; :::; an+

1
an+1

�
=

�
an+

1

an+1

�
pn−1+ pn−2�

an+
1

an+1

�
qn−1+ qn−2

=
(anan+1+1)pn−1+ an+1pn−2
(anan+1+1)qn−1+ an+1qn−2

=
an+1(anpn−1+ pn−2) + pn−1
an+1(anqn−1+ qn−2)+ qn−1

=
an+1pn+ pn−1
an+1qn+ qn−1

=
pn+1
qn+1

:

The claim now follows by induction. �

Example 175. Determine [1; 1; 1; 1; :::] as well as its first 6 convergents.

Solution. The first few convergents are C0=1, C1= [1; 1]= 2, C2= [1; 1; 1]= 1+
1

1+
1

1

=
3

2
.

Since this starts getting tedious, we instead compute the convergents Cn=
pn
qn

recursively:

n −2 −1 0 1 2 3 4 5 6
an 1 1 1 1 1 1 1
pn 0 1 1 2 3 5 8 13 21
qn 1 0 1 1 2 3 5 8 13

Cn 1 2
3
2

5
3

8
5

13
8

21
13

Note that the Cn are quotients of Fibonacci numbers (F0=0; F1=1; F2=1; :::)! To be precise, Cn=
Fn+2
Fn+1

.

Next, let's determine x= [1; 1; 1; 1; :::] by observing that x=1+
1

1+
1

1+ :::

=1+
1

x
.

The equation x=1+
1

x
simplifies to x2−x− 1=0, which has the solutions x= 1� 5

p

2
.

Since 1− 5
p

2
is negative (while x is between C0=1 and C1=2), we conclude [1; 1; 1; 1; :::] = 1+ 5

p

2
� 1.618.

This is the golden ratio '.

Comment. Note that we have shown, in particular, limn!1
Fn+1
Fn

= '� 1.618.

Comment. As noticed in the previous example, the fractions pn
qn
=

Fn+2
Fn+1

are always reduced. In other words,

gcd (Fn; Fn+1)= 1. Moreover, pnqn−1− pn−1qn=(−1)n implies that Fn
2−Fn−1Fn+1=(−1)n+1.
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Example 176. Determine the first few digits of the simple continued fraction of �, as well as the
first few convergents.
Solution. �= 3 :14159265359:::, 1/0.14159:::= 7 :06251:::, 1/0.06251:::= 15 :99659:::, 1/0.99659:::=
1 :00341:::, 1/0.00341:::= 292 :63459:::

Continuing this way, we find �= [3; 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1;14; 2; 1; :::].
Since � is irrational, this is an infinite continued fraction. No pattern in this fraction is known.
We compute the convergents Cn=

pn
qn

as follows:

n −2 −1 0 1 2 3 4 5 6
an 3 7 15 1 292 1 1
pn 0 1 3 22 333 355 103;993 ::: :::
qn 1 0 1 7 106 113 33; 102 ::: :::

Cn 3
22
7

333
106

355
113

103;993
33; 102

::: :::

Comment. For n> 1, each approximation x� pn
qn

is best possible in the sense that it is better than any other

approximation a

b
with b6 qn. In other words, if

����x− a

b

����< ������x− pn
qn

������, then b> qn.

Comment. Because of this, it is natural to expect that the approximations 22
7

and 355
113 are particularly good,

because they are followed by much �bigger� fractions.

Indeed, 22
7
= 3.14 28::: and 355

113
= 3.141592 92::: are very good approximations to �.

Comment. It is known that � is irrational, so that the above �wild� continued fraction will go on forever.
Embarrassingly, we do not know whether, for instance, e+ �= 5.85987448205::: is irrational.
e+�= [5; 1; 6; 7; 3;21; 2; 1; 2; 2; 1; 1; 2; 3; 3; 2; 5; 2; 1; 1; :::]
All evidence points to it being irrational, but nobody has a proof. (In particular, we cannot be sure that this
continued fraction goes on forever.)

Comment. Among other approximations to �, Ramanujan suggested ��
�
97.5− 1

11

�
1/4

. Can you explain how
one might discover this?
[Hint: Compute the continued fraction of �4!]
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Notes for Lecture 22 Thu, 11/12/2020

20 Basic proof techniques

20.1 Proofs by contradiction

Example 177. (again) 5
p

is not rational.

Proof. Assume (for contradiction) that we can write 5
p

=
n

m
with n; m 2N. By canceling common factors,

we can ensure that this fraction is reduced.
Then 5m2=n2, from which we conclude that n is divisible by 5. Write n=5k for some k2N. Then 5m2=(5k)2

implies that m2 = 5k2. Hence, m is also divisible by 5. This contradicts the fact that the fraction n /m is
reduced. Hence, our initial assumption must have been wrong. �

Variations. Does the same proof apply to, say, 7
p

?
Which step of the proof fails for 9

p
?

Comment. We showed earlier that [1; 1;1;1; :::]= 1+ 5
p

2
. Since this is an infinite continued fraction, this proves

that 1+ 5
p

2
is irrational. Consequently, 5

p
is irrational as well.

20.2 A famous example of a direct proof

Example 178. (Gauss) 1+ 2+ :::+n=
n(n+1)

2

Proof. Write s(n)= 1+ 2+ :::+n.
2s(n)= (1+2+ :::+n)+(n+(n− 1)+ :::+1)=(1+n)+ (2+n−1)+ :::+(n+1)=n � (n+1). Done! �

Anecdote. 9 year old Gauss (1777-1855) and his classmates were tasked to add the numbers 1 to 100 (and not
bother their teacher while doing so). Gauss was not writing much on his slate::: just the final answer: 5050.

20.3 Proofs by induction

(induction) To prove that CLAIM(n) is true for all integers n>n0, it suffices to show:

� (base case) CLAIM(n0) is true.

� (induction step) If CLAIM(n) is true for some n, then CLAIM(n+1) is true as well.

Why does this work? By the base case, CLAIM(n0) is true. Thus, by the induction step, CLAIM(n0+1) is
true. Applying the induction step again shows that CLAIM(n0+2) is true, :::
Comment. In the induction step, we may even assume that CLAIM(n0);CLAIM(n0+1); :::;CLAIM(n) are
all true. This is sometimes referred to as strong induction.
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Example 179. (Gauss, again) For all integers n> 1, 1+ 2+ :::+n=
n(n+1)

2
.

Proof. Again, write s(n)= 1+2+ :::+n.

CLAIM(n) is that s(n) = n(n+1)

2
.

� (base case) CLAIM(1) is that s(1)= 1(1+ 1)

2
=1. That's true.

� (induction step) Assume that CLAIM(n) is true (the induction hypothesis) for some fixed n.

s(n+1)= s(n) + (n+1)=
n(n+1)

2
this is where we use

the induction hypothesis

+(n+1)=
(n+1)(n+2)

2

This shows that CLAIM(n+1) is true as well.

By induction, the formula is therefore true for all integers n> 1. �
Comment. The claim is also true for n=0 (if we interpret the left-hand side correctly).

Example 180. Induction is not only a proof technique but also a common way to define things.

� The factorial n! can be defined inductively (i.e. recursively) by

0!= 1; (n+1)!=n! � (n+1):

Comment. This may not seem impressive, because we can �spell out� n!= 1 � 2 � 3���(n− 1)n directly.

� The Fibonacci numbers Fn are defined inductively (i.e. recursively) by

F0=0; F1=1; Fn+1=Fn+Fn−1:

Getting a feeling. F2=F1+F0=1, F3=F2+F1=2, F4=3, F5=5, F6=8, F7= 13, :::

Comment. Though not at all obvious, there is a way to compute Fn directly. Let '= 1+ 5
p

2
�1.618.

Then Fn= b'n/ 5
p
c. Try it! For instance, '10/ 5

p
� 55.0036. That seems like magic at first. But

it is the beginning of a general theory (look up, for instance, Binet's formula and C-finite sequences).
Also, recall that we observed that Fn+1/Fn are the convergents of the continued fraction for '.

Example 181. We are interested in the sums s(n)= 1+2+4+ :::+2n.

Getting a feeling. s(1)=1+2=3, s(2)=1+2+4=7, s(3)=1+2+4+8= 15, s(4)= 31
Conjecture. s(n)= 2n+1− 1.
Proof by induction. The statement we want to prove by induction is: s(n)= 2n+1− 1 for all integers n> 1.

� (base case) s(1)= 1=21+1− 1 verifies that the claim is true for n=1.

� (induction step) Assume that s(n)= 2n+1− 1 is true for some fixed n.

We need to show that s(n+1)=2n+2− 1.
Using the induction hypothesis, s(n+1)= s(n) + 2n+1 =

IH
(2n+1− 1)+2n+1=2n+2− 1. QED!

Direct proof. 2s(n)=2(1+2+4+ :::+2n)=2+4+ :::+2n+1= s(n)−1+2n+1. Hence, s(n)=2n+1−1.
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Notes for Lecture 23 Tue, 11/17/2020

Example 182. (extra) Can we generalize the previous example by replacing 2 with x?

That is, we are now interested in the sums s(n)= 1+ x+ x2+ :::+ xn.

Mimic previous direct approach. xs(n)=x(1+x+x2+ :::+xn)=x+x2+ :::+xn+1= s(n)− 1+xn+1.
Hence, (x− 1)s(n)=xn+1− 1, and we have found:

1+x+x2+ :::+xn=
xn+1− 1
x− 1 (geometric sum)

Sigma notation. Instead of 1+x+ x2+ :::+ xn we will begin to write
X
k=0

n

xk.

Geometric series. We can let n!1 to get
X
k=0

1
xk=

1
1− x

, provided that jxj< 1.

Example 183. (homework) Prove the formula for geometric sums using induction.

Example 184. (sum of squares) For all integers n> 1, 12+22+ :::+n2=
n(n+1)(2n+1)

6
.

Proof. Write t(n)= 12+22+ :::+n2.
We use induction on the claim t(n)=

n(n+1)(2n+1)

6
.

� The base case (n=1) is that t(1)= 1. That's true.

� For the inductive step, assume the formula holds for some value of n.

We need to show the formula also holds for n+1.

t(n+1) = t(n)+ (n+1)2

(using the induction hypothesis) =
n(n+1)(2n+1)

6
+ (n+1)2

=
(n+1)
6

[2n2+n+6n+6]

=
(n+1)
6

(n+2)(2n+3)

This shows that the formula also holds for n+1.

By induction, the formula is true for all integers n> 1. �

Example 185. Observe the following connection with our sums and integrals from calculus:

�
Z
0

n

xdx=
n2

2
versus

X
x=0

n

x=1+2+ :::+n=
n(n+1)

2
=
n2

2
+ lower order terms

�
Z
0

n

x2dx=
n3

3
versus

X
x=0

n

x2=12+22+ :::+n2=
n(n+1)(2n+1)

6
=
n3

3
+ lower order terms

�
Z
0

n

x3dx=
n4

4
versus

X
x=0

n

x3=13+23+ :::+n3=

�
n(n+1)

2

�2
=
n4

4
+ lower order terms

The connection makes sense: the integrals give areas below curves, and the sums are approximations to these
areas (rectangles of width 1).
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Example 186. (Riemann hypothesis) The Riemann zeta function �(s)=
P

n>1
1

ns
converges

(for real s) if and only if s> 1.

The divergent series �(1) is the harmonic series, and �(p) is often called a p-series in Calculus II.

Comment. Euler achieved worldwide fame by discovering and proving that �(2)= �2

6
(and similar formulas for

�(4); �(6); :::).
For complex values of s=/ 1, there is a unique way to �analytically continue� this function. It is then �easy� to
see that �(−2)=0, �(−4)=0, :::. The Riemann hypothesis claims that all other zeroes of �(s) lie on the line
s=

1

2
+ a −1
p

(a 2R). A proof of this conjecture (checked for the first 10,000,000,000,000 zeroes) is worth
$1,000,000.
http://www.claymath.org/millennium-problems/riemann-hypothesis

The connection to primes. Here's a vague indication that �(s) is intimately connected to prime numbers:

�(s) =

�
1+

1
2s
+

1

22s
+ :::

��
1+

1
3s
+

1

32s
+ :::

��
1+

1
5s
+

1

52s
+ :::

�
���

=
1

1− 2−s
1

1− 3−s
1

1− 5−s
���

=
Y

p prime

1

1− p−s

This infinite product is called the Euler product for the zeta function. If the Riemann hypothesis was true, then
we would be better able to estimate the number �(x) of primes p6 x.
More generally, certain statements about the zeta function can be translated to statements about primes. For
instance, the (non-obvious!) fact that �(s) has no zeros for Res=1 implies the prime number theorem that we
discussed earlier.
http://www-users.math.umn.edu/~garrett/m/v/pnt.pdf
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