
Midterm #2: practice MATH 311 � Intro to Number Theory
Midterm: Tuesday, Nov 3

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any typo,
that is not yet fixed by the time you send it to me, is worth a bonus point.

Problem 1.

(a) Determine the number of invertible residues modulo 116.

(b) Determine the (multiplicative) order of 2 modulo 11.

(c) Is 2 a primitive root modulo 11?

(d) For which a is 2a a primitive root modulo 11?

(e) List all primitive roots modulo 11.

(f) List all primitive roots modulo 14.

(g) List all primitive roots modulo 22.

(h) Suppose x (modn) has (multiplicative) order k. What is the order of xa?

(i) What is the number of primitive roots modulo 101?

Solution.

(a) The number of invertible residues modulo 116 is �(116) = �(4)�(29)= 2 � 28= 56.

(b) The order of 2 must divide �(11)= 10. The only possibilities therefore are 1; 2; 5; 10.

Since 22=4�/ 1, 25= 32�−1�/ 1 (mod11), we conclude that the order of 2 is 10.

(c) Since the order of 2 (mod11) equals �(11), 2 is a primitive root modulo 11.

(d) 2a is a primitive root modulo 11 if and only if gcd (a; 10) =1.

(e) Hence, the primitive roots modulo 11 are 21=2, 23=8, 27� 7, 29� 6.

(f) Since �(14) = �(2)�(7) = 6, the possible orders of residues modulo 14 are 1; 2; 3; 6. Residues with order 6 are
primitive roots. Our strategy is to find one primitive root and to use that to compute all primitive roots.

There is no good way of finding the first primitive root. We will just try the residues 3; 5; : : : (we are skipping
2 because it is not invertible modulo 14).
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We compute the order of 3 (mod14):

Since 32=9�/ 1, 33�−1�/ 1 (mod14), we find that 3 has order 6. Hence, 3 is a primitive root.

All other invertible residues are of the form 3x with x=0; 1; 2; : : : ; 5 (note that 5= �(14)− 1).

Recall that the order of 3x (mod14) is 6

gcd (6; x) .

Hence, 3x is a primitive root if and only if gcd (6; x)= 1, which yields x=1; 5.

In conclusion, the primitive roots modulo 14 are 31=3; 35� 5.

(g) We proceed as in the previous item:

� Since �(22)= 10, the possible orders of residues modulo 22 are 1; 2; 5; 10.

� We find one primitive root by trying residues 3; 5; : : : (2 is out because it is not invertible modulo 22)

32�/ 1 but 35� 1 (mod22), so 3 is not a primitive root modulo 22.

52�/ 1 but 55� 1 (mod22), so 5 is not a primitive root modulo 22.

72�/ 1, 75�−1�/ 1 (mod 22), so 7 is a primitive root modulo 22.

� 7x (mod22) has order 10
gcd (10; x) . We have gcd (10; x)= 1 for x=1; 3; 7; 9.

� Hence, the primitive roots modulo 22 are 71=7; 73� 13; 77� 17; 79� 19.

(h) xa has order k

gcd (k; a) .

(i) The number of primitive roots modulo 101 is �(�(101))= �(100)= 40.

Problem 2.

(a) Find the smallest positive integer x simultaneously solving the four congruences:

x� 1 (mod 3), x� 2 (mod 4), x� 3 (mod 5), x� 4 (mod11).

(b) What is the next largest solution x to the above congruences?

(c) Solve x� 1 (mod 3), x� 2 (mod 4), 2x� 3 (mod 5), 3x� 4 (mod11).

(d) Find the smallest integer a> 2 such that 2ja, 3j(a+1), 4j(a+2) and 5j(a+3).

Solution.

(a) Since 3 � 4 � 5 � 11= 660, by the Chinese remainder theorem, the general solution is

x� 1 � 220 � 220mod3
−1

1

+2 � 165 � 165mod4
−1

1

+3 � 132 � 132mod5
−1

3

+4 � 60 � 60mod11
−1

−2
� 220+ 330+ 1188− 480= 1258� 598�−62 (mod660).
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The smallest positive integer solution therefore is x= 598.

(b) The next largest solution x to the above congruences is x= 598+ 660= 1258.

(c) 2x� 3 (mod 5) has the unique solution x� 2−1 � 3� 3 � 3�−1 (mod 5).

3x� 4 (mod11) has the unique solution x� 3−1 � 4� 4 � 4� 5 (mod11).

Our simplified task therefore is to solve x�1 (mod 3), x�2 (mod4), x�−1 (mod5), x�5 (mod11). We reuse
the previous part to produce the solution

x� 1 � 220 � 220mod3
−1

1

+2 � 165 � 165mod4
−1

1

− 1 � 132 � 132mod5
−1

3

+5 � 60 � 60mod11
−1

−2
� 220+ 330− 396− 600=−446� 214 (mod 660).

(d) This is the same as solving a� 0 (mod 2), a�−1 (mod 3), a�−2 (mod 4), a�−3 (mod 5). Notice that we
can't apply the Chinese remainder theorem directly, because 2 and 4 are not coprime.

However, if a�−2 (mod 4) then, automatically, a�0 (mod2). So, we can drop the latter congruence and only
look for solutions of a�−1 (mod 3), a�−2 (mod 4), a�−3 (mod 5).

By the Chinese remainder theorem (since 3; 4; 5 are pairwise coprime), there is a unique solution a modulo
3 � 4 � 5= 60. Note that a=2 is such a solution. Hence, the next smallest solution is a= 62.

[Don't worry if you didn't see that a= 2 is a solution. You can find it by going through the same kind of
computations as in the previous parts.]

Problem 3.

(a) Using the Chinese remainder theorem, determine all solutions to x2� 4 (mod 55).

(b) Using the Chinese remainder theorem, determine all solutions to x2� 1 (mod 105).

(c) How many solutions does the congruence x2� 1 (modN) have for N = 210? Modulo N = 1995?

Solution.

(a) By the Chinese remainder theorem (CRT):

x2� 4 (mod55)
() x2� 4 (mod 5) and x2� 4 (mod 11)
() x��2 (mod 5) and x��2 (mod11)

The two obvious solutions modulo 55 are �2. To get one of the two additional solutions, we solve x�2 (mod5),
x�−2 (mod11). [Then the other additional solution is the negative of that.]

x� 2 � 11 � 11mod5
−1

1

− 2 � 5 � 5mod11
−1

−2

� 22+ 20� 42�−13 (mod 55)

Hence, the solutions are x��2 (mod55) and x��13 (mod55).

(b) Note that 105=3 � 5 � 7. By the CRT, x is a solution to x2� 1 (mod 105) if and only if x is a solution to the
three congruences

x2� 1 (mod 3); x2� 1 (mod 5); x2� 1 (mod 7):
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Since 3; 5; 7 are primes each of these only has the obvious solutions x��1. Using the CRT, these combine in
2 � 2 � 2= 8 different ways to a solution modulo 105. For instance, one the 8 possibilities is

x�−1 (mod 3); x� 1 (mod 5); x�−1 (mod 7)
() x�−1 � 5 � 7 � [(5 � 7)mod3

−1 ]

2

+1 � 3 � 7 � [(3 � 7)mod5
−1 ]

1

− 1 � 3 � 5 � [(3 � 5)mod7
−1 ]

1

=−70+ 21− 15� 41 (mod105):

Corresponding to it is the negative case x� 1 (mod 3), x�−1 (mod 5), x� 1 (mod 7) which is equivalent to
x�−41 (mod105).

Likewise, we determine all 8 solutions as follows:

x� 1 (mod 3); x� 1 (mod 5); x� 1 (mod 7) () x� 1 (mod105)
x� 1 (mod 3); x� 1 (mod 5); x�−1 (mod 7) () x�−29 (mod105)
x� 1 (mod 3); x�−1 (mod 5); x� 1 (mod 7) () x�−41 (mod105)
x� 1 (mod 3); x�−1 (mod 5); x�−1 (mod 7) () x� 34 (mod105)
x�−1 (mod 3); x� 1 (mod 5); x� 1 (mod 7) () x�−34 (mod105)
x�−1 (mod 3); x� 1 (mod 5); x�−1 (mod 7) () x� 41 (mod105)
x�−1 (mod 3); x�−1 (mod 5); x� 1 (mod 7) () x� 29 (mod105)
x�−1 (mod 3); x�−1 (mod 5); x�−1 (mod 7) () x�−1 (mod105)

Note that, because each case has a negative, we only need to compute 4 of these 8 cases (of which one is the
trivial solution).

In summary, x2� 1 (mod105) has exactly the 8 solutions x��1;�29;�34;�41 modulo 105.

(c) Since 210=2 �3 �5 �7, we can again use the Chinese remainder theorem and argue as in the previous case. There
is just one difference: the congruence x2� 1 (mod 2) only has 1 solution (because 1�−1 (mod 2)). Hence, we
find that the congruence x2� 1 (mod210) has 1 � 2 � 2 � 2=8 solutions.

On the other hand, since 1995=3 �5 � 7 � 19, the congruence x2�1 (mod1995) will have 2 �2 �2 �2=16 solutions.

Problem 4.

(a) What are the last two (decimal) digits of 34488?

(b) Determine 137738 (mod63).

Solution.

(a) We need to determine 34488 (mod 100). Since gcd (3; 100) = 1 and �(100) = �(4)�(25) = 2 � 20= 40 and 4488�
8 (mod 40), we have 34488� 38 (mod 100). We compute 32=9, 34= 81�−19, 38� (−19)2� 61 (mod 100) and
conclude that 34488� 61 (mod100). This means that the last two (decimal) digits of 34488 are 61.

(b) Clearly, 137738� 11738 (mod 63). Since gcd (11; 63) = 1 as well as �(63) = �(32)�(7) = (32− 31) � 6 = 36 and
738� 18 (mod36), we have 137738� 1118 (mod63).

Binary exponentiation: 112= 121�−5, 114� 25, 118� 625�−5, 1116� 25 (mod63).

Hence, 137738� 112 � 1116�−5 � 25� 1 (mod63).

Comment. Our calculation shows that 1118� 1 (mod 63). Indeed, the order of 11 (mod 63) is equal to 18
(which divides �(63) = 36).
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Problem 5. For unknown reasons, the high priest of number theory has banned usage of the Euclidean algorithm.
With the help of the Chinese remainder theorem, determine the modular inverse of 149 modulo 666.

Solution. Note that 666=2 �9 � 37. We first compute 149−1 modulo each of 2; 9; 37. That's super easy: 149−1�1−1�
1 (mod 2), 149−1� 5−1� 2 (mod 9) and 149−1� 1−1� 1 (mod37).

By the Chinese remainder theorem,

149−1� 1 � 9 � 37 � [(9 � 37)mod2
−1 ]

1

+2 � 2 � 37 � [(2 � 37)mod9
−1 ]

5

+1 � 2 � 9 � [(2 � 9)mod37
−1 ]

−2

� 333+ 740− 36� 1037� 371 (mod666):

Problem 6. Compute 7111 (mod90) in the following three different ways:

(a) Directly, using binary exponentiation.

(b) With the help of Euler's theorem.

(c) With the help of the Chinese remainder theorem (as well as Euler's theorem).

Solution.

(a) Modulo 90, we have 72= 49, 74= 492� 61, 78� 612� 31, 716� 312� 61, 732� 31, 764� 61.

Therefore, 7111=764 � 732 � 78 � 74 � 72 � 7� 61 � 31 � 31 � 61 � 49 � 7� 73 (mod90).

(b) Since 90= 2 � 32 � 5, we find �(90) = 90
(
1− 1

2

�(
1− 1

3

�(
1− 1

5

�
= 24 so that Euler's theorem tells us that 724�

1 (mod90). Since 111� 15 (mod24), we have 7111� 715=78 � 74 � 72 � 7� 31 � 61 � 49 � 7� 73 (mod90).

(c) Notice that 90=2 � 32 � 5, where 2; 9; 5 are pairwise coprime.

Computing 7111 modulo each of 2; 9; 5 is much easier (note that �(9)=9
(
1− 1

3

�
=6 so that, by Euler's theorem

76� 1 (mod 9); on the other hand, 74� 1 (mod 5)):

7111� 1111� 1 (mod 2); 7111� 73� (−2)3� 1 (mod 9); 7111� 73� 23� 3 (mod 5):

By the Chinese remainder theorem,

7111� 1 � 9 � 5 � [(9 � 5)mod2
−1 ]

1

+1 � 2 � 5 � [(2 � 5)mod9
−1 ]

1

+3 � 2 � 9 � [(2 � 9)mod5
−1 ]

2

� 45+ 10+ 108� 73 (mod 90):

Comment. While this might seem like the most involved approach (it certainly requires the most expertise),
observe that the actual computations are much simpler than in the other cases (because we are operating
modulo very small numbers).

Problem 7. Note that 323= 17 � 19.

(a) Modulo 323, what do we learn from Euler's theorem?

(b) Based on Euler's theorem and the Chinese remainder theorem, find the smallest exponent k such that xk�
1 (mod323) for all integers x coprime to 323.

Solution.

(a) Since �(323) = �(17)�(19) = 16 � 18= 288, we learn that x288� 1 (mod323) for all x that are coprime to 323.

(b) Since 323= 17 � 19, the smallest such exponent is �(323) = lcm (�(17); �(19))= lcm (16; 18) = 144.
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Comparison. If x144� 1 (mod 323), then x288= (x144)2� 1 (mod 323). This means that Euler's theorem is
weaker than the congruence we obtained using the Chinese remainder theorem.

Here is a review how we obtained that strengthening from the Chinese remainder theorem: By Fermat's little
theorem, we have x16�1 (mod17) and x18�1 (mod19). Since 144 is a multiple of both 16 and 18, it follows that
x144�1 modulo both 17 and 19. By the Chinese remainder theorem, this is equivalent to x144�1 (mod17 �19).

Problem 8. Let a; b be positive integers.

(a) Suppose that xa� 1 (modn) and xb� 1 (modn). Show that xgcd(a;b)� 1 (modn).

(b) Use the previous result to find all solutions to x10� 1 (mod2017).

(c) Use the previous result to find all solutions to x10� 1 (mod2018).

(d) On the other hand, there are 16 solutions to x10� 1 (mod2016). Explain!

Solution.

(a) By Bezout's identity, we find integers r; s such that ra+ sb= gcd (a; b). Hence,

xgcd(a;b)=xra+sb=(xa)r � (xb)s� 1r � 1s� 1 (modn):

(b) Note that a solution x is necessarily coprime to 2017 (why?!). By Fermat's little theorem, x2016�1 (mod2017).
Since gcd (2016; 10) = 2, we conclude (using the first part) that x2� 1 (mod2017). Since 2017 is a prime, this
congruence has only the solutions x��1 (mod2017).

(c) Again, a solution x is necessarily coprime to 2018. By Euler's theorem, x1008�1 (mod2018) because �(2018)=
�(2)�(1009)= 1008. Since gcd (1008; 10)= 2, we conclude that x2� 1 (mod2018).

By the Chinese remainder theorem (CRT):

x2� 1 (mod2018)
() x2� 1 (mod 2) and x2� 1 (mod 1009)
() x��1 (mod 2) and x��1 (mod1009)
() x� 1 (mod 2) and x��1 (mod1009)

[Recall that, modulo a prime, the congruence x2� 1 has only the solutions x��1.]

We conclude that the only solutions are x�+1 (mod2018).

[Make sure that this argument makes sense! Review Problem 3 if in doubt.]

(d) Once more, a solution x is necessarily coprime to 2016. By Euler's theorem, x576�1 (mod2016). Since gcd (576;
10)= 2, we conclude, again, that x2� 1 (mod2016). Since 2016=25 � 32 � 7, the CRT implies:

x2� 1 (mod2016)
() x2� 1 (mod 25) and x2� 1 (mod 32) and x2� 1 (mod 7)

Each of the three congruences has (at least) two solutions (namely, x��1), so that we are going to have (at
least) a total of 2 � 2 � 2= 8 solutions. That we actually have 16=4 � 2 � 2 solutions modulo 2016 is due to the
fact that x2� 1 (mod 25) actually has 4 instead of just 2 solutions (namely, x��1;�15 (mod 25)).

Just in case you're curious, the 16 solutions are

�1;�127;�433;�449;�559;�575;�881;�1007

modulo 2016.
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Problem 9.

(a) Among the numbers 1; 2; : : : ; 2020, how many are coprime to 2020?

(b) Carefully state Euler's theorem.

(c) Carefully state the Chinese remainder theorem.

(d) Carefully state Euler's criterion for quadratic residues.

(e) Use Euler's criterion for quadratic residues to determine whether 3 is a quadratic residue modulo 19.

(f) Use Euler's criterion for quadratic residues to determine whether 3 is a quadratic residue modulo 23.

(g) If the prime factorization of n is n= p1
k1� � �prkr, what does �(n) evaluate to?

Solution.

(a) �(2020) = �(22)�(5)�(101)= (22− 21) � 4 � 100= 800

(b) If n> 1 and gcd (a; n)= 1, then a�(n)� 1 (modn).

(c) Let n1; n2; : : : ; nr be positive integers with gcd (ni; nj) =1 for i=/ j. Then the system of congruences

x� a1 (modn1); : : : ; x� ar (modnr)

has a simultaneous solution, which is unique modulo n=n1� � �nr.

(d) Let p be an odd prime and a an invertible residue modulo p. Then a is a quadratic residue modulo p if and
only if a(p−1)/2� 1.

(e) We compute 39 (mod 19) using binary exponentiation: 32= 9, 34= 81� 5, 38� 25� 6 (mod 19) so that 39�
3 � 6�−1 (mod19). Hence, by Euler's criterion, 3 is not a quadratic residue modulo 19.

(f) We compute 311 (mod 23) using binary exponentiation: 32= 9, 34= 81�−11, 38� 121� 6 (mod 23) so that
311� 3 � 9 � 6� 1 (mod23). Hence, by Euler's criterion, 3 is a quadratic residue modulo 23.

(g) If the prime factorization of n is n= p1
k1� � �prkr, then �(n) = (p1

k1− p1
k1−1)� � �(prkr− pr

kr−1).

Alternatively, �(n)=n
�
1− 1

p1

�
� � �

�
1− 1

pr

�
.

Problem 10.

(a) You wonder whether 33; 660; 239 is a prime. A (comparatively) quick computation shows that 233660238�
20364778 (mod 33660239). What do you conclude?

(b) You wonder whether 39; 916; 801 is a prime. A quick computation shows that 239916800� 1 (mod 39916801).
What do you conclude?

(c) What does it mean for a to be a Fermat liar modulo n?

(d) What does it mean for n to be an absolute pseudoprime?

(e) Outline the Fermat primality test. What makes this a heuristic test?

(f) Using Fermat's little theorem and base 3, show that 341 is not a prime.
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(g) Is 2 a Fermat liar modulo 341?

These computations are tedious to do by hand. Do make sure though that the idea and the procedure are clear.

Solution.

(a) This proves that 33660239 is not a prime. Because, if it was a prime, then 233660238� 1 (mod 33660239) by
Fermat's little theorem.

[Indeed, 33660239= 269 � 125; 131 but finding that factorization is a more difficult task!]

(b) We still don't know whether 39916801 is a prime or not. There are two possibilities: either 39916801 is a prime,
or 2 is a Fermat liar modulo 39916801.

[Actually, 39916801 is a prime.]

(c) It means that an−1� 1 (modn) despite n being composite.

[In other words, with respect to the base a, n behaves like a prime according to Fermat's little theorem.]

(d) These are numbers n for which every residue a is either a Fermat liar modulo n or gcd (a; n)> 1.

(e) Fermat primality test:

Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �possibly prime�
Algorithm:

Repeat k times:
Pick a random number a from f2; 3; : : : ; n− 2g.
If an−1�/ 1 (modn), then stop and output �not prime�.

Output �possibly prime�.

The test is heuristic because it is not designed to decide with absolute certainty whether a number is a prime.
More specifically, if it claims that a number is composite, then we actually do have certainty that the number
is indeed composite (but don't know its factors). However, the test is unable to prove that a number is prime;
if we choose the number of iterations k large enough, then we have strong reason to believe that n is a prime
(one can prove that, if we do not deal with an absolute pseudoprime [which are very rare], then there is only
a probability of 2−k that we mistakenly label a composite number as probably prime).

(f) 3340� 56�/ 1 (mod341) so that, by Fermat's little theorem, 341 cannot be a prime.

Of course, computing that 3340 � 56 (mod 341) requires some work. In the absence of knowing the prime
factorization of 341, we resort to direct binary exponentiation (see comment below) and 340=(101010100)2=
256+64+16+4. Here are the intermediate values we get modulo 341: 32�9, 34�81, 38�82, 316�245, 332�9
(so that, now, the values repeat), 364� 81, 3128� 82, 3256� 245.

Useful observation. Note that we could have saved some work by exploiting 332�32 (mod341), which implies
330� 1 (mod341). Since 340� 10 (mod30), we find that 3340� 310=32 � 38� 56 (mod 341).

(g) We need to compute 2340 (mod 341). We proceed using binary exponentiation as in the previous part. The
values we get modulo 341 are: 22=4, 24= 16, 28= 256, 216= 64, 232=4, so that, again, values repeat.

In the end, we find that 2340�1 (mod341). This means that 2 is indeed a Fermat liar modulo 341 (because we
already know that 341 is not an actual prime).

Useful observation. Again, we can save a lot of work by exploiting 232� 22 (mod341), which implies 230�
1 (mod341). As before, we conclude that 2340� 210=22 � 28� 1 (mod341).

Comment. If we know the factorization of 341 then we can cut down on our work a little bit by using the Chinese
remainder theorem and Euler's theorem (but realize that if we have to ask questions like whether 341 is a prime, then
we wouldn't know this factorization and wouldn't be able to apply these theorems).
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Problem 11.

(a) State Wilson's theorem.

(b) List all quadratic residues modulo 21.

(c) What is the number of invertible quadratic residues modulo 91? Modulo 101? Modulo 165?

Solution.

(a) If p is a prime, then (p− 1)!�−1 (mod p).

(b) 02= 0, (�1)2= 1, (�2)2= 4, (�3)2= 9, (�4)2= 16, (�5)2� 4, (�6)2� 15, (�7)2� 7, (�8)2� 1, (�9)2� 18,
(�10)2� 16

In summary, the quadratic residues are 0; 1; 4; 7; 9; 15; 16; 18.

(The invertible quadratic residues are 1; 4; 16. That's �(21)/4= �(3)�(7)

4
=3 many.)

(c) Since 91= 7 � 13 is a product of two distinct odd primes, there are 1

4
�(91) = 6 � 12

4
= 18 invertible quadratic

residues modulo 91.

Since 101 is a prime, there are �(101)
2

= 50 invertible quadratic residues modulo 101.

Since 165=3 �5 �11 is a product of three distinct odd primes, there are 1

8
�(165)= 2 � 4 � 10

8
=10 invertible quadratic

residues modulo 165.
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