
Problems #1 Special Functions & WZ Theory
AARMS Summer School, Dalhousie University

Jul 11 � Aug 5, 2016

First day warmup problems

Problem 1. (2 XP)

(a) We wish to �nd the ordinary generating function G(x) of the Fibonacci sequence Fn. We sum the recurrence
relation Fn=Fn¡1+Fn¡2 over n to get

G(x)=
X
n=0

1

Fnx
n=

X
n=0

1

Fn¡1x
n+

X
n=0

1

Fn¡2x
n=xG(x)+x2G(x);

which implies (1¡x¡x2)G(x) =0. Correct this (obviously wrong) argument!

(b) The Pell numbers Pn are de�ned by P0=0, P1=1 and Pn=2Pn¡1+Pn¡2 for n>2. Find a closed formula for Pn.

(c) De�ne the polynomials Fn(x) by F0(x) = 0, F1(x) = 1 and Fn(x) = xFn¡1(x) + Fn¡2(x). Find the generating
function for (Fn(x))n=0;1;2;:::. Find a closed formula for Fn(x) and show that it specializes to the one for the
Fibonacci numbers and the Pell numbers.

Solution.

(a) Note that two of the intermediate sums involve Fibonacci numbers with negative index. The wrong argument
proceeds under the assumption that we can just let F¡1 = F¡2 = 0. This, however, is inconsistent with the
recursion Fn=Fn¡1+Fn¡2. If F¡1=F¡2=0, then the recursion, would imply Fn=0 for all n> 0, so that the
generating function G(x) indeed would be zero.

One way to �x the issue is to use values for F¡1 and F¡2 which are compatible with the recursion. Using the
recursion with n=1, we �nd F¡1=F1¡F0=1 and F¡2=F0¡F¡1=¡1. Hence,

G(x) =
X
n=0

1

Fnxn=
X
n=0

1

Fn¡1xn+
X
n=0

1

Fn¡2xn=(1+xG(x)) + (¡1+x+x2G(x));

which implies (1¡x¡x2)G(x) =x and, therefore, G(x) =x/(1¡x¡x2). Which is correct.

Alternatively, avoiding the issue of thinking about negative indices, we can make sure to use the recursion only
with n> 2, and to use the initial conditions F0=0, F1=1.

G(x)=
X
n=0

1

Fnxn=F0+F1x+
X
n=2

1

Fn¡1xn+
X
n=2

1

Fn¡2xn=x+xG(x)+x2G(x);

which again produces the correct known generating function.

(b) Pn=

¡
1+ 2

p �n¡¡
1¡ 2

p �n
2 2
p

1+ 2
p

is known as the �silver ratio�.

(c) The generating function satis�es the equation

G(z)=
X
n=0

1

Fn(x)z
n=F0(x)+F1(x)z+

X
n=2

1

xFn¡1(x)z
n+

X
n=2

1

Fn¡2(x)z
n= z+xzG(z) + z2G(z);
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which we solve for

G(z)=
z

1¡xz¡ z2 :

Partial fractions leads us to expressing G(z) as

G(z)=
1

�¡ �

�
1

1¡�z ¡
1

1¡ �z

�
; �=

x+ x2+4
p

2
; �=

x¡ x2+4
p

2
:

Expanding the geometric series, we then �nd the explicit Binet-like formula

Fn(x)=
�n¡ �n

�¡ �
:

In the case x=1, this indeed reduces to the Binet formula for the Fibonacci numbers, and, in the case x=2,
this reduces to the Binet-like formula we derived earlier in this problem.

�

Problem 2. (3 XP) The Lucas numbers Ln are the numbers de�ned by L0=2, L1=1 and Ln=Ln¡1+Ln¡2 for n>2.

(a) Determine the ordinary generating function for the Lucas numbers.

(b) Let V be the set of all complex sequences (Xn)n=0;1;2;::: satisfying Xn=Xn¡1+Xn¡2 for all n> 2. Show that
V is a 2-dimensional vector space over C. Conclude that the Fibonacci and Lucas numbers form a basis.

(c) Prove that Ln=Fn¡1+Fn+1 and that 5Fn=Ln¡1+Ln+1.

(d) Prove that Ln=F2n/Fn.

(e) Determine, if possible, the limit of Ln/Fn as n!1.

Solution.

(a)
2¡x

1¡x¡x2

(b) The �rst part of the claim is that V is a vector space. This means that, if an and bn are two sequences satisfying
the recurrence, then any linear combination �an+ �bn also satis�es the recurrence. This is certainly true, and
holds for any homogeneous linear recurrence.

Secondly, we need to show that V is 2-dimensional. This follows from the fact that any sequence (an)n>0
satisfying the recursion is completely determined by the (initial) values a0, a1. More precisely, the map V !C2

de�ned by (an)n>0 7! (a0; a1) is an injective linear map. This map is also surjective, because the initial values
can take any values, and so is an isomorphism.

To see that the Fibonacci and Lucas numbers form a basis, we only need to observe that, as vectors in the 2-
dimensional space V , these two are linearly independent.

(c) Taking the generating function of both sides of Ln=Fn¡1+Fn+1 shows that the equation is true, for all n>1,
if and only if X

n>1
Lnx

n=
X
n>1

Fn¡1x
n+

X
n>1

Fn+1x
n:

Using the known generating functions, this simpli�es to

2¡x
1¡x¡x2 ¡ 2=

x2

1¡x¡x2 +
1
x

x
1¡x¡x2 ¡ 1;
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which is true, with both sides equalling x(1+ 2x)/(1¡x¡x2).

Along the same lines, we show that 5Fn=Ln¡1+Ln+1.

Here is an alternative approach which saves some calculations. Observe that, for both equations, each side is a
solution to the linear recurrence Xn=Xn¡1+Xn¡2. Checking that the equations for two initial values therefore
proves that the equations hold in general.

Thirdly, we could have used Binet's formula.

(d) This is straightforward to verify using Binet's formula for Fn and Ln.

(e) Likewise.

�

Exploring using Sage

Problem 3. (1 XP) Use Sage to compute the, say, �rst ten Taylor coe�cients of x/(1¡x¡x2). Are they Fibonacci
numbers?

Solution.

Sage] (x/(1-x-x^2)).series(x,11)

1x+1 x2+2 x3+3 x4+5 x5+8 x6+ 13x7+ 21x8+ 34 x9+ 55x10+O(x11)
As expected, these are the Fibonacci numbers.
If we want to continue working with power series, the following computation in Sage is more suitable because it
constructs an actual power series that can be manipulated as such (for instance, multiplied with other power series).

Sage] R.<x> = QQ[['x']]

Sage] R.set_default_prec(10)

Sage] x/(1-x-x^2)

x+x2+2 x3+3 x4+5 x5+8 x6+ 13x7+ 21 x8+ 34 x9+ 55x10+O(x11)

�

Problem 4. (1 XP) Find a rational number continuing the pattern

0.0001000100020003000500080013:::

Then, use Sage to compute that number to 100 decimal digits for veri�cation.

Sage challenge: Can you �nd a way to discover the rational number from just the given digits (not using any knowledge
about Fibonacci numbers)?

Solution. Recall that

x+x2+2x3+3x4+5x5+8x6+ :::=
X
n=1

1

Fnxn=
x

1¡x¡x2 :

Hence, h
x

1¡x¡x2
i
x=

1

104

=
10000

99989999

is the rational number we are looking for.

Sage] rat = (x/(1-x-x^2)).subs(x=10^-4)

Sage] rat
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10000
99989999

Sage] rat.n(digits=100)

0.000100010002000300050008001300210034005500890144023303770610098715972584418167660947771386616375\
5037141

One solution to the challenge is the following:

Sage] 0.0001000100020003000500080013.nearby_rational(max_denominator=10^10)

10000
99989999

The natural way to discover this possibility (that's what I did myself) is to declare, say, num=0.33 and then explore
available functions by typing num. (including the dot) and pressing TAB. �
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