Problem 1. (warmup, 2 XP) Suppose that the sequence $(a_n)_n \geq 0$ has ordinary generating function $F(x)$. For each of the following choices of b_n , express the generating function of $(b_n)_{n\geqslant 0}$ in terms of $F(x)$.

(a)
$$
b_n = a_{n+3}
$$

\n(b) $b_n = n^2 a_n$
\n(c) $b_n = (n+1)(a_n - 2)$
\n(d) $b_n = a_{2n}$
\n(e) $b_n = \sum_{k=0}^n (-1)^k a_k$

Solution. Let us denote the generating function of $(b_n)_{n\geq 0}$ as $G(x)$.

(a)
$$
G(x) = \frac{F(x) - a_0 - a_1x - a_2x^2}{x^3}
$$

\n(b) $G(x) = (xD)^2 F(x) = (x^2D^2 + xD)F(x) = x^2F''(x) + xF'(x)$
\n(c) $G(x) = (xD + 1)\left(F(x) - \frac{2}{1-x}\right) = xF'(x) + F(x) - \frac{2x}{(1-x)^2} - \frac{2}{1-x} = xF'(x) + F(x) - \frac{2}{(1-x)^2}$
\n(d) $G(x) = \frac{1}{2}(F(\sqrt{x}) + F(-\sqrt{x}))$

(e) The ogf of $((-1)^n a_n)_{n \geq 0}$ is $F(-x)$. Hence, the ogf of its partial sums is $G(x) = \frac{F(-x)}{1-x}$. $1 - x$ ^{*} . <u>Дани</u> и производите в общественности в село в
В село в се

Problem 2. (warmup, 1 XP) Show that $\sum_{n=0}^{\infty} {n+k \choose k} x^n = \frac{1}{(1-x)^{k+1}}$. $(1-x)^{k+1}$. [Use binomial and/or geometric series!]

Solution.

Using the binomial series, we have

$$
\frac{1}{(1-x)^{k+1}} = \sum_{n \geq 0} {\binom{-k-1}{n}} (-x)^n,
$$

and so we need to show that

$$
(-1)^n\binom{-k-1}{n} = \binom{n+k}{k},
$$

which is true because

$$
(-1)^n\binom{-k-1}{n} = (-1)^n\frac{(-k-1)(-k-2)\cdots(-k-n)}{n!} = \frac{(k+1)(k+2)\cdots(k+n)}{n!} = \binom{n+k}{n} = \binom{n+k}{k}.
$$

Alternatively, we can expand each geometric series to get

$$
\frac{1}{(1-x)^{k+1}} = (1+x+x^2+x^3+\ldots)^{k+1}.
$$

The claim is that the coefficient of x^n in that expression is $\binom{n+k}{k}$. Combinatorially, we have $k+1$ colors and *n* indistinguishable objects which get colored. How many possible outcomes are there? The key idea is to think about placing the n objects in a string, beginning with those in the first color, followed by a separator, then those of the second color, followed by a separator, and so on. In the end, we have $n + k$ things lined up $(n + k)$ objects and $k + 1 - 1$ separators). What matters is only the position of the *k* separators. Since there are $n + k$ positions available, the total number of possibilities is $\binom{n+k}{k}$.

We can also start with the geometric series

$$
\frac{1}{1-x} = \sum_{n \geqslant 0} x^n
$$

and differentiate k times to obtain

$$
\frac{k!}{(1-x)^{k+1}} = \sum_{n \geq k} n(n-1)\cdots(n-k+1)x^{n-k} = \sum_{n \geq 0} (n+k)(n+k-1)\cdots(n+1)x^n,
$$

and it only remains to divide both sides by *k*!.

 Here is a fourth proof, using the geometric series and an induction argument based on our knowledge of generating functions. The claim is true for $k = 0$, because this is just the geometric series. Assume, for induction, that the claim is true for *k*. That is, $(1-x)^{-k-1}$ is the ogf of $\binom{n+k}{k}$. Then,

$$
\frac{1}{(1-x)^{k+2}} = \frac{1}{1-x} \frac{1}{(1-x)^{k+1}}
$$

$$
\sum_{j=0}^{n} \binom{j+k}{k}.
$$

It therefore suffices to establish

is the ogf of the partial sums

$$
\sum_{j=0}^{n} {j+k \choose k} = {n+k+1 \choose k+1},
$$

which can be proved by using Pascal's basic relation

$$
\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}
$$

to make the sum telescope

$$
\sum_{j=0}^{n} {j+k \choose k} = \sum_{j=0}^{n} {j+k+1 \choose k+1} - {j+k \choose k+1} = {n+k+1 \choose k+1}.
$$

Problem 3. (2 XP) Let $H_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$ be the harmonic numbers. Show that $\sum_{k=1} H_k = (n+1)H_n - n$. *n* $H_k = (n+1)H_n - n.$

Solution.

• Recall that

$$
\sum_{n=1}^{\infty} H_n x^n = \frac{1}{1-x} \log \bigg(\frac{1}{1-x} \bigg).
$$

Hence, the ogf of the left-hand side is

$$
\frac{1}{(1-x)^2} \log\biggl(\frac{1}{1-x}\biggr).
$$

On the other hand, the ogf of the right-hand side is

$$
\left((xD+1) \left[\frac{1}{1-x} \log \left(\frac{1}{1-x} \right) \right] \right) - (xD) \frac{1}{1-x} = x \left(\frac{1}{(1-x)^2} \log \left(\frac{1}{1-x} \right) + \frac{1}{(1-x)^2} \right) + \frac{1}{1-x} \log \left(\frac{1}{1-x} \right) - \frac{x}{(1-x)^2}
$$

$$
= \frac{1}{(1-x)^2} \log \left(\frac{1}{1-x} \right).
$$

Armin Straub straub@southalabama.edu **²** The generating functions match, and so the identity is true for all $n \geq 1$.

Alternatively, we can give a direct derivation as follows:

$$
\sum_{k=1}^{n} H_k = n \cdot 1 + (n-1) \cdot \frac{1}{2} + (n-2) \cdot \frac{1}{3} + \dots + (n - (n - 1)) \cdot \frac{1}{n}
$$

= $nH_n - \left(\frac{1}{2} + \frac{2}{3} + \dots + \frac{n-1}{n}\right)$
= $nH_n - (n - H_n)$
= $(n+1)H_n - n$

Problem 4. (2 XP) Suppose that the sequence $(a_n)_{n\geqslant 0}$ has ordinary generating function $F(x)$.

- (a) Express the ordinary generating function for $b_n = \sum_{k=1}^{\infty} {n \choose k} a_k$ in terms of $F(x)$ $k=0$ $\sum_{k=0}^{n} {n \choose k} a_k$ in terms of $F(x)$.
- (b) The *binomial transform* of a sequence a_n is the sequence $b_n = \sum_{n=1}^{\infty} (-1)^k {n \choose k} a_k$. What is the *k*=0 $\sum_{k=0}^{n} (-1)^k {n \choose k} a_k$. What is the binomial transform of the binomial transform of a sequence?

Solution.

(a)

$$
\sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} \sum_{k=0}^n {n \choose k} a_k x^n = \sum_{k=0}^{\infty} a_k \sum_{n=k}^{\infty} {n \choose k} x^n = \sum_{k=0}^{\infty} a_k \frac{x^k}{(1-x)^{k+1}}
$$

= $\frac{1}{1-x} F\left(\frac{x}{1-x}\right)$

(b) The ogf of $((-1)^n a_n)_{n \geqslant 0}$ is $F(-x)$. Therefore, by the previous part, the binomial transform has generating function $G(x) = \frac{1}{1-x} F\left(\frac{x}{x-1}\right)$.

Hence, the binomial transform of the binomial transform has generating function

$$
\frac{1}{1-x}G\left(\frac{x}{x-1}\right) = \frac{1}{1-x} \frac{1}{1-\frac{x}{x-1}} F\left(\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1}\right) = F(x).
$$

This means that the binomial transform of the binomial transform of a_n is a_n itself. In other words, the binomial transform is an involution.

Problem 5. (3 XP) The exponential generating function of a sequence $(a_n)_{n\geqslant0}$ is the (formal) power series $\sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$. Suppose that the sequences $(a_n)_{n\geqslant0}$ and $(b_n)_{n\geqslant0}$ have exponential generating functions $F(x)$ and $G(x)$.

- (a) Which sequence is generated by $F'(x)$? By $xF(x)$? By $F(x)G(x)$?
- (b) What is the exponential generating function of na_n ? Of $b_n = \sum_{n=1}^{\infty} {n \choose n} a_n$? $k=0$ $\sum_{k=0}^{n}$ $\binom{n}{k}a_k$?
- (c) What is the exponential generating function of the binomial transform of *an*? Revisit the question what the binomial transform of the binomial transform of a sequence is.

 \Box

Solution.

(a)
$$
F'(x) = \sum_{n=1}^{\infty} a_n \frac{x^{n-1}}{(n-1)!}
$$
 generates the sequence a_{n+1} .
\n
$$
xF(x) = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n!} = \sum_{n=0}^{\infty} (n+1)a_n \frac{x^{n+1}}{(n+1)!}
$$
 generates the sequence na_{n-1} .
\n
$$
F(x)G(x) = \left(\sum_{n=0}^{\infty} a_n \frac{x^n}{n!} \right) \left(\sum_{n=0}^{\infty} b_n \frac{x^n}{n!} \right) = \sum_{n,m=0}^{\infty} a_n b_m \frac{x^{n+m}}{n!m!} = \sum_{N=0}^{\infty} \sum_{k=0}^{N} a_k b_{n-k} \frac{x^N}{k!(N-k)!} = \sum_{n=0}^{\infty} c_n \frac{x^n}{n!}
$$

generates the sequence

$$
c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}.
$$

(b) The exponential generating function of na_n is $xF'(x)$.

It follows directly from the convolution formula above, and the fact that e^x generates $(1)_{n\geqslant0}$, that the exponential generating function of $b_n = \sum_{k=1}^n {n \choose k} a_k$ is $e^x F(x)$. $k=0$ $\sum_{k=0}^{n}$ $\binom{n}{k} a_k$ is $e^x F(x)$.

(c) The exponential generating function of the binomial transform of a_n is $e^{-x}F(-x)$.

The binomial transform of the binomial transform of a_n is a_n itself, because if $G(x) = e^{-x}F(-x)$, then $e^{-x}G(-x) = e^{-x}(e^{x}F(x)) = F(x)$. $e^{-x}G(-x) = e^{-x}(e^{x}F(x)) = F(x).$