Problem 1. (warmup, 2 XP) Suppose that the sequence $(a_n)_{n\geq 0}$ has ordinary generating function F(x). For each of the following choices of b_n , express the generating function of $(b_n)_{n\geq 0}$ in terms of F(x).

(a)
$$b_n = a_{n+3}$$

(b) $b_n = n^2 a_n$
(c) $b_n = (n+1)(a_n-2)$
(d) $b_n = a_{2n}$
(e) $b_n = \sum_{k=0}^n (-1)^k a_k$

Problem 2. (warmup, 1 XP) Show that $\sum_{n=0}^{\infty} {\binom{n+k}{k}} x^n = \frac{1}{(1-x)^{k+1}}$. [Use binomial and/or geometric series!]

Problem 3. (2 XP) Let $H_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$ be the harmonic numbers. Show that $\sum_{k=1}^{n} H_k = (n+1)H_n - n$.

Problem 4. (2 XP) Suppose that the sequence $(a_n)_{n \ge 0}$ has ordinary generating function F(x).

- (a) Express the ordinary generating function for $b_n = \sum_{k=0}^n \binom{n}{k} a_k$ in terms of F(x).
- (b) The binomial transform of a sequence a_n is the sequence $b_n = \sum_{k=0}^n (-1)^k \binom{n}{k} a_k$. What is the binomial transform of the binomial transform of a sequence?

Problem 5. (3 XP) The exponential generating function of a sequence $(a_n)_{n \ge 0}$ is the (formal) power series $\sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$. Suppose that the sequences $(a_n)_{n \ge 0}$ and $(b_n)_{n \ge 0}$ have exponential generating functions F(x) and G(x).

- (a) Which sequence is generated by F'(x)? By xF(x)? By F(x)G(x)?
- (b) What is the exponential generating function of na_n ? Of $b_n = \sum_{k=0}^n \binom{n}{k} a_k$?
- (c) What is the exponential generating function of the binomial transform of a_n ? Revisit the question what the binomial transform of the binomial transform of a sequence is.