
Problems #3 Special Functions & WZ Theory
AARMS Summer School, Dalhousie University

Jul 11 � Aug 5, 2016

Problem 1. (1 XP) Suppose that (an)n>0 has ogf F (x). Which sequence is generated by F (x)k, with k 2Z>0?

Solution. The sequence (cn)n>0 generated by F (x)k is

cn=
X

n1>0;n2>0;:::;nk>0
n1+:::+nk=n

an1 ��� ank:

If this is to be used for practical purposes, we can optimize this a bit by noting that terms like a1a1a2 and a1a2a1 can
be grouped together. This leads to

cn=
X

m0>0;m1>0;���;mn>0
m0+m1+:::+mn=k

m1+2m2+:::+nmn=n

k!
m1!m2!���mn!

a0
m0a1

m1 ��� anmn: �

Problem 2. (1 XP) Let R be a ring. Which are the invertible elements in the ring R[[x]] of formal power series?

Solution. A formal power series

a0+ a1x+ a2x
2+ :::

is invertible in R[[x]] if and only if a0 is invertible in R. Indeed, note that

 X
n>0

anx
n

! X
n>0

bnx
n

!
=1

is equivalent to a0b0=1 and, for all n> 1, X
k=0

n

akbn¡k=0:

Hence, the invertibility of a0 in R is a necessary condition. To see that it is also su�cient, observe that the convolution
sum can be rewritten as

bn=¡
1
a0

X
k=1

n

akbn¡k;

which allows us to de�ne the coe�cients bn recursively. �

Problem 3. (2 XP)

(a) Give a generating function proof of the identity
X
k=1

n

F2k=F2n+1¡ 1.

(b) Also, show how the identity can be deduced from Binet's formula.
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Solution.

(a) Let F (x)=x/(1¡x¡x2) be the generating function of the Fibonacci numbers Fn. It follows that

X
n>0

F2nx
2n=

F (x)+F (¡x)
2

=
x2

1¡ 3x2+x4 ;
X
n>0

F2nx
n=

x
1¡ 3x+x2 :

Likewise, X
n>0

F2n+1x
2n+1=

F (x)¡F (¡x)
2

=
x(1¡x2)
1¡ 3x2+x4 ;

X
n>0

F2n+1x
n=

1¡x
1¡ 3x+x2 :

The desired identity therefore translates into the generating function identity

1
1¡x

x
1¡ 3x+x2 =

1¡x
1¡ 3x+x2 ¡

1
1¡x;

which indeed holds true.

(b) Let '=
¡
1+ 5

p �
/2 and  =

¡
1¡ 5

p �
/2 be the roots of x2¡x¡ 1. Starting by summing the geometric sum,

we therefore have

X
k=1

n

F2k=
X
k=1

n
'2k¡  2k
'¡  =

1
'¡  

"
'2(n+1)¡ 1
'2¡ 1 ¡  2(n+1)¡ 1

 2¡ 1

#
=
'2n+1¡  2n+1

'¡  ¡ 1=F2n+1¡ 1:

Here, we used that '2¡ 1= ' and  2¡ 1=  , as well as ¡1/'=  . �

Problem 4. (2 XP) The Bessel di�erential equation is the second-order equation

x2y 00+xy 0+(x2¡�2)y=0:

For simplicity, we will only consider the case �=0 here.

(a) Assume there is a power series solution y(x) =
P

n>0 anx
n (that is, a solution which is analytic at x = 0),

normalized so that a0=1. Translate the di�erential equation into a recurrence for the coe�cients an.

(b) Solve that recurrence.

(c) Write down the corresponding solution of the di�erential equation. This is the Bessel function J0(x).

Solution.

(a) Substituting the power series into the di�erential equation, we obtain

x2y 00+xy 0+(x2¡�2)y=
X
n>0

(n(n¡ 1)anxn+nanxn+ anxn+2)= a1x+
X
n>2

(n2an+ an¡2)x
n=0:

Hence, y(x) =
P

n>0 anx
n is a solution if and only if a1=0 and, for all n> 2,

n2an+ an¡2=0:

(b) We conclude that a2n+1=0 for all n> 0. For the even indices, we have the recurrence

(2n)2a2n+ a2(n¡1)=0;
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that is,

a2n=¡
1
4n2

a2(n¡1)=

�
¡1
4

�
2 1
(n(n¡ 1))2a2(n¡2)= :::=

�
¡1
4

�n
1

(n!)2
a0=

(¡1)n
(n!)24n

:

(c) We conclude that the corresponding solution of the di�erential equation is

y(x)=
X
n>0

(¡1)n
(n!)2

�
x
2

�
2n
;

the Bessel function J0(x). �

Problem 5. (2 XP) Denote with Bn the Bernoulli numbers.

(a) Show that all, but the �rst, odd Bernoulli numbers are zero, that is, B2n+1=0 for all n> 1.

(b) Show that Euler's identity

1
n

X
k=1

n �
n
k

�
BkBn¡k+Bn¡1=¡Bn

is true for all n> 1.

Solution.

(a) Let F (x)=x/(ex¡ 1) be the exponential generating function for the Bernoulli numbers. Then,

X
n>0

B2n+1
x2n+1

(2n+1)!
=
F (x)¡F (¡x)

2
=¡x

2
;

which shows that B2n+1=0 with the only exception for n=0, in which case B1=¡1/2.

(b) First, let us rewrite the identity as

X
k=0

n �
n
k

�
BkBn¡k¡Bn+nBn¡1=¡nBn: (1)

The exponential generating function of this is�
x

ex¡ 1

�
2
¡ x
ex¡ 1 +x

x
ex¡ 1 =¡xD

x
ex¡ 1 :

Simplifying both sides, we obtain

x2+(x2¡x)(ex¡ 1)
(ex¡ 1)2 =¡x (e

x¡ 1)¡xex
(ex¡ 1)2 ;

and these are indeed equal, so that (1) is actually true for all n> 0. �

Problem 6. (2 XP)

(a) Take the logarithm of both sides of Euler's product formula and di�erentiate to prove that

np(n)=
X
k=0

n¡1

p(k)�(n¡ k);
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where �(n) is the sum of the divisors of n.

(b) Let p(n; k) be the number of partitions of n into k parts. Generalize Euler's product formula to the bivariate
generating function X

n;k>0
p(n; k)xnyk:

Solution.

(a) Recall that Euler's identity states X
n=0

1

p(n)xn=
Y
n>1

1
1¡xn :

Since d

dx
logF (x)= F 0(x)

F (x)
, taking the logarithm of both sides and di�erentiating yields

X
n=1

1

np(n)xn¡1

,X
n=0

1

p(n)xn=
d
dx

X
n>1

log
�

1
1¡xn

�
=
X
n>1

nxn¡1

1¡xn ;

which we rearrange to X
n=1

1

np(n)xn=

 X
n=0

1

p(n)xn

! X
n>1

nxn

1¡xn

!
:

The claim now follows from comparing coe�cients and noting that

X
n>1

nxn

1¡xn =
X
n>1

n(xn+x2n+x3n+ :::) =
X
m=1

1

�(m)xm:

See also: http://mathoverflow.net/questions/127000/partitions-sum-of-divisors-identity

(b) We can proceed along the lines of our derivation of Euler's product identity. Recall that we interpreted the factor

1

1¡xn =1+xn+x2n+ :::

as describing how often the part n occurs in a partition. Replacing each such factor with

1+ yxn+ y2x2n+ :::=
1

1¡ yxn ;

to keep track of the number of parts as the exponent of y, we arrive at

X
n;k>0

p(n; k)xnyk=
Y
n>1

1
1¡ yxn :

We refer to [Wilf, Generatingfunctionology , p. 100] for a systematic generalization of generating functions of
this kind. �
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