Problem 1. (1 XP) Suppose that $(a_n)_{n\geq 0}$ has ogf F(x). Which sequence is generated by $F(x)^k$, with $k \in \mathbb{Z}_{>0}$?

Problem 2. (1 XP) Let R be a ring. Which are the invertible elements in the ring R[[x]] of formal power series?

Problem 3. (2 XP)

- (a) Give a generating function proof of the identity $\sum_{k=1}^{n} F_{2k} = F_{2n+1} 1$.
- (b) Also, show how the identity can be deduced from Binet's formula.

Problem 4. (2 XP) The Bessel differential equation is the second-order equation

$$x^2y'' + xy' + (x^2 - \alpha^2)y = 0$$

For simplicity, we will only consider the case $\alpha = 0$ here.

- (a) Assume there is a power series solution $y(x) = \sum_{n \ge 0} a_n x^n$ (that is, a solution which is analytic at x = 0), normalized so that $a_0 = 1$. Translate the differential equation into a recurrence for the coefficients a_n .
- (b) Solve that recurrence.
- (c) Write down the corresponding solution of the differential equation. This is the Bessel function $J_0(x)$.

Problem 5. (2 **XP**) Denote with B_n the Bernoulli numbers.

- (a) Show that all, but the first, odd Bernoulli numbers are zero, that is, $B_{2n+1} = 0$ for all $n \ge 1$.
- (b) Show that Euler's identity

$$\frac{1}{n}\sum_{k=1}^{n} \binom{n}{k} B_k B_{n-k} + B_{n-1} = -B_n$$

is true for all $n \ge 1$.

Problem 6. (2 XP)

(a) Take the logarithm of both sides of Euler's product formula and differentiate to prove that

$$np(n) = \sum_{k=0}^{n-1} p(k)\sigma(n-k),$$

where $\sigma(n)$ is the sum of the divisors of n.

(b) Let p(n,k) be the number of partitions of n into k parts. Generalize Euler's product formula to the bivariate generating function

$$\sum_{n,k \ge 0} p(n,k) x^n y^k.$$