
Problems #4 Special Functions & WZ Theory
AARMS Summer School, Dalhousie University

Jul 11 � Aug 5, 2016
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Problem 2. (2 XP) Let Cn be the nth Catalan number.

(a) Show that Cn counts the number of �legal� expressions that can be formed using n pairs of parentheses. For
instance, C3=5 because we have the possibilities ((())); (()()); (())(); ()(()); ()()():

(b) (bonus; 2 XP extra) Show that Cn also counts the number of permutations of f1; 2; :::; ng that are 123-
avoiding. That is, those permutations �1�2:::�n such that we do not have i < j <k with �i<�j<�k.

For instance, the 123-avoiding permutations of f1; 2; 3; 4g are the C4 = 14 permutations 1432, 2143, 2413,
2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321. On the other hand, 2314 is not 123-
avoiding because it contains 234 as a substring.

Solution.

(a) Note that each expression is of the form (A)B, where A and B are themselves legal parenthetical expressions.
The expression A can involve anywhere from k=0 to k=n¡ 1 pairs of parentheses, in which case B is formed
from the remaining n¡ 1¡ k. In terms of a formula, this means that, for n> 1,

Cn=
X
k=0

n¡1

CkCn¡1¡k;

which is Segner's recurrence relation. From it, as well as C0 = 1, we derived the generating function for the
Catalan numbers in class.

(b) In fact, we can replace 123 with any permutation �2S3. That is, the number of �-avoiding permutations is Cn.

See, for instance, Stanley's recent book on Catalan numbers for this and many more interpretations of the
Catalan numbers.

Here, we only note that the study and enumeration of pattern-avoiding permutations is a very active and
surprisingly large enterprise within combinatorics, with many open problems sparking people's interests. �

Exploring Sage

Problem 3. (2 XP extra) Explore CFiniteSequences in Sage.

It turns out that C-�nite sequences are closed under the Hadamard product, that is, if an and bn are C�nite, then
the product cn= anbn is C-�nite. Unfortunately, this closure property is not yet implemented in Sage. Nevertheless,
�nd a (possibly heuristic) way to �nd the generating function of Fn2, the square of the Fibonacci numbers.
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Solution. One possibility is to use the guess functionality:

Sage] C.<x> = CFiniteSequences(QQ)

Sage] fibo_sq = C.guess([fibonacci(n)^2 for n in [0..10]])

Sage] fibo_sq.ogf()

¡x2+x
x3¡ 2 x2¡ 2 x+1

Sage] [fibo_sq[n] for n in [0..10]]

[0; 1; 1; 4; 9; 25; 64; 169; 441; 1156; 3025]

As we will see later in class, we know a priori that the squares of the Fibonacci numbers satisfy a recursion with
constant coe�cients of order at most three. Our guessing therefore is guaranteed to produce the correct generating
function. �

Problem 4. (2 XP extra) Je� Lagarias proved in 2002 that the Riemann hypothesis is equivalent to

�(n)<Hn+ ln(Hn)e
Hn

for all n> 1. Here, �(n) =
P

djn d is the sum of the divisors of n. Obtain numerical evidence using Sage by verifying
that the inequality holds for small n. Also, make plots to get a visual impression.

Solution. Here is just some ideas how to get started investigating this inequality.

Sage] [sigma(n) for n in [1..11]]

[1; 3; 4; 7; 6; 12; 8; 15; 13; 18; 12]

Sage] def H(n):
return sum(1/k for k in [1..n])

Sage] [H(n) for n in [1..11]]�
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Sage] [(H(n)+ln(H(n))*exp(H(n))-sigma(n)).n(20) for n in [1..11]]

[0.00000; 0.31717; 1.6245; 0.97797; 4.3823; 0.83418; 7.3293; 2.8633; 7.4326; 5.0338; 13.664]

Sage] list_plot([(H(n)+ln(H(n))*exp(H(n))-sigma(n)).n() for n in [1..200]], plotjoined=True)
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To collect 106 USD, it only remains to show that none of these spikes dip below the x-axis. �

Problem 5. (1 XP extra) De�ne the following function A(n) in Sage:

Sage] def A(n):
if n==0: return 1
return 2*(2*n-1)/(n+1) * A(n-1)

Sage] [ A(n) for n in [0..10] ]

[1; 1; 2; 5; 14; 42; 132; 429; 1430; 4862; 16796]

(a) Show that A(n) equals the n-th Catalan number, that is, A(n)= 1
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(c) Observe that A(1).parent() is the rational numbers, even though 1 is an integer. This is the result of using
the division operator /. Use the operator // to rewrite the function A(n) so that its output is always an integer.

Solution.

(a) The Sage function computes the sequence A(n) de�ned by

A(n)=
2(2n¡ 1)
n+1

A(n¡ 1); A(0)= 1:

It is straightforward to check that this �rst-order recurrence is also satis�ed by, and hence characterizes, the
Catalan numbers.
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(c) Do it! The lesson is that Sage is very careful about which, say, ring an object belongs to. The division of, for
instance, two polynomials will produce something that lives in the fraction �eld of rational functions. This same
behaviour is observed here when dividing two integers. If we know that the division results in another integer,
we can use // instead to avoid passage to the fraction �eld (in general, // and its companion % can be used for
division with remainder).

Sage] (4/2).parent()

Q

Sage] (4//2).parent()

Z

Sage] 5//2

2

Sage] 5%2

1

Sage] R.<x> = QQ[]

Sage] (x^2-1)/(x-1)

x+1
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Sage] ((x^2-1)/(x-1)).parent()

Frac(Q[x])

Sage] ((x^2-1)//(x-1)).parent()

Q[x]

Sage] (x^2-1)//(x-1)

x+1

Sage] (x^2+1)//(x-1)

x+1

Sage] (x^2+1)%(x-1)

2

Sage]

�
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