
Problems #5 Special Functions & WZ Theory
AARMS Summer School, Dalhousie University

Jul 11 � Aug 5, 2016

Problem 1. (1 XP) Suppose that the two sequences (an)n>0 and (bn)n>0 are equal for large enough n. How is that
re�ected on their generating functions?

Solution. If an= bn for n>N , then the generating functions di�er by a polynomial of degree at most N . �

Problem 2. (2 XP) Let pM(n) be the number of integer partitions of n with parts of size at most M . For instance,
p2(5)= 3, because we have the partitions (2; 2; 1), (2; 1; 1; 1), (1; 1; 1; 1; 1).

Determine the ordinary generating function
X
n=0

1

pM(n)x
n. Is the sequence (pM(n))n>0 C-�nite?

Solution. By the same argument as for Euler's product formula, we have

X
n=0

1

pM(n)x
n=

Y
k=1

M
1

1¡xk :

Since its generating function is rational, the sequence (pM(n))n>0 is C-�nite. �

Problem 3. Let Bn be the number of partitions of a set of size n. For instance, B3=5 because the set f1; 2; 3g can
be partitioned as ff1; 2; 3gg, ff1; 2g; f3gg, ff1; 3g; f2gg, ff1g; f2; 3gg, ff1g; f2g; f3gg.

(a) (1 XP) Express Bn+1 recursively in terms of Bn; Bn¡1; :::

(b) (1 XP) Show that the ordinary generating function F (x) of Bn satis�es the functional equation

F (x)= 1+
x

1¡xF
�

x
1¡x

�
:

(c) (1 XP) Iterate this functional equation to show that we can expand F (x) as

F (x) =
X
n=0

1
xn

(1¡x)(1¡ 2x)���(1¡nx) :

(d) (1 XP) Determine the exponential generating function for Bn.

(e) (1 XP) Let Cn be the number of partitions of a set of size n such that each part consists of at least 2 elements.
For instance, C3=4 because the set f1;2;3;4g can be partitioned as ff1;2;3;4gg, ff1;2g;f3;4gg, ff1;3g;f2;4gg,
ff1; 4g; f2; 3gg. Show that Bn=Cn+Cn+1. Try to give a direct combinatorial proof.

(f) (1 XP extra) Determine the exponential generating function for the numbers Cn. Numerically verify your
result in Sage.

(g) (1 XP extra) Explore the SetPartitions command in Sage. For instance:

� Use it to �nd the 5 partitions of the set f1; 2; 3g.

� What is computed by {x for x in SetPartitions(5) if len(x)<=2}?

� Similarly, but a little more challenging, what is computed by {x for x in SetPartitions(5) if
min(map(len,x))>=2}? In particular, what is the interpretation of the following numbers:
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Sage] [len({x for x in SetPartitions(n) if min(map(len,x))>=2}) for n in [1..7]]

[0; 1; 1; 4; 11; 41; 162]

� Explain why len(SetPartitions(7)) is much slower than SetPartitions(7).cardinality().

Recall that SetPartitions? will bring up explanations and examples. Putting a ?? at the end of a function, further shows
its source code.

(h) (1 XP extra) Experimentally �nd (i.e. conjecture) the exponential generating function of the number of
partitions of a set of size n such that each part consists of at least 3 elements.

(i) (1 XP extra) Make a conjecture about the exponential generating function of the number of partitions of a
set of size n such that each part consists of at least k elements.

Solution. The numbers Bn are known as Bell numbers, but go back to at least medieval Japan.

(a) By de�nition, Bn+1 is the number of distinct partitions of the set f0;1;2; :::;ng. Denote with P such a partition.
Let us focus on the element 0, and let P0 2 P be the set containing 0. The size k = jP0j of that set can be
anything from k=1 to k=n+1.

Given that size k, there are a total of
�

n
k¡ 1

�
many possibilities for the set P0.

Given P0, there are Bn+1¡k many ways to partition the remaining n+1¡ k many elements.

In other words,

Bn+1=
X
k=1

n+1 �
n

k¡ 1

�
Bn+1¡k=

X
k=0

n �
n
k

�
Bk: (1)

(b) By a previous exercise, we know that, for any sequence Bn, if F (x) is the ordinary generating of Bn, then

X
n>0

 X
k=0

n �
n
k

�
Bk

!
xn=

1
1¡xF

�
x

1¡x

�
:

Taking the generating function of both sides of (1), we therefore obtain

F (x)¡ 1
x

=
1

1¡xF
�

x
1¡x

�
;

which implies the claimed functional equation.

As noted in [Kla03], the substitution x! x/(1+x) results in the equivalent functional equation

F
�

x
1+x

�
=1+xF (x):

By the way, it is shown in [Kla03] that the ordinary generating function F (x) of the Bell numbers does not
satisfy any algebraic di�erential equation. The proof shows that any such algebraic di�erential equation would
be incompatible with the functional equation we just derived. However, we will see below that the exponential
generating function can be simply expressed in terms of known functions.

(c) Let us do one iteration of the functional equation to (hopefully) spot patterns:

F (x) =1+
x

1¡xF
�

x
1¡x

�
=1+

x
1¡x

"
1+

x

1¡x
1¡ x

1¡x
F

 x

1¡x
1¡ x

1¡x

!#
=1+

x
1¡x

h
1+

x
1¡ 2xF

�
x

1¡ 2x

�i
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You surely can guess what happens in the next iteration: we expect that the argument x

1¡ 2x will get replaced
with x

1¡ 3x . Indeed, for any n, we have
x

1¡x
1¡n x

1¡x
=

x

1¡ (n+1)x:

What we found is that

F (x)= 1+
x

1¡x

�
1+

x
1¡ 2x

�
1+

x
1¡ 3x(1+ :::)

��
:

It is important to realize that the factors x

1¡nx are of the form x+O(x2), and so multiplying with them increases
the degrees of x. Multiplying the iterated expression out, we therefore obtain

F (x) =
X
n=0

1
xn

(1¡x)(1¡ 2x)���(1¡nx) :

Note that we can avoid any question of convergence during the argument since we are working with a formal
power series.

(d) The recurrence implies that G0(x)= exG(x). Hence, G(x)=Cee
x
. Since G(0)= 1, we �nd G(x)= ee

x¡1.

(e) The partitions of f1; 2; :::; ng that are counted by Bn come in two �avors:

� The ones where each part has size at least 2, and these are counted by Cn.

� Those that contain some parts fx1g; fx2g; ::: of size 1. We need to show that there are Cn+1 many of
these. So, here we are comparing with partitions of f0; 1; 2; :::; ng, where we gained an extra element 0.
The crucial idea is almost jumping at us: we should do something with this new element as well as with
the singletons fx1g; fx2g; :::, and the most natural thing to do is to throw them all together as a part.
Keeping the other parts untouched, we now have a partition f0; 1;2; :::; ng whose parts have size at least
2. Indeed, this way, we obtain any such partition exactly once, and there are Cn+1 many of them.

Combined, we therefore have Bn=Cn+Cn+1.

(f) The identity Bn=Cn+Cn+1 translates into

ee
x¡1=H(x)+H 0(x):

This is a linear di�erential equation, which we can therefore solve with an integrating factor. Here, we multiply
both sides with ex so that

exee
x¡1= exH(x)+ exH 0(x)=

d
dx
(exH(x)):

We can now integrate both sides to �nd

exH(x)= ee
x¡1+C:

Since H(0)=C0=1, we have C =0, and hence

H(x)= ee
x¡1¡x:

We compute the �rst few terms of the Taylor series to verify:

Sage] egf = exp(exp(x)-1-x).series(x, 9)

Sage] egf

1+
1
2
x2+

1
6
x3+

1
6
x4+

11
120

x5+
41
720

x6+
9

280
x7+

143
8064

x8+O(x9)
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Sage] C = [egf.coefficient(x,n)*factorial(n) for n in [0..8]]

Sage] C

[1; 0; 1; 1; 4; 11; 41; 162; 715]

Sage] [C[n]+C[n+1] for n in [0..7]]

[1; 1; 2; 5; 15; 52; 203; 877]

Sage] [bell_number(n) for n in [0..7]]

[1; 1; 2; 5; 15; 52; 203; 877]

Sage]

(g) Explore!

Sage] list(SetPartitions({1,2,3}))

[ff1; 2; 3gg; ff1g; f2; 3gg; ff1; 3g; f2gg; ff1; 2g; f3gg; ff1g; f2g; f3gg]

Sage] [x for x in SetPartitions(5) if len(x)<=2]

[ff1; 2; 3; 4; 5gg; ff1g; f2; 3; 4; 5gg; ff1; 3; 4; 5g; f2gg; ff1; 2; 4; 5g; f3gg; ff1; 2; 3; 5g; f4gg; ff1; 2; 3; 4g; f5gg;
ff1; 2g; f3; 4; 5gg; ff1; 3g; f2; 4; 5gg; ff1; 4g; f2; 3; 5gg; ff1; 5g; f2; 3; 4gg; ff1; 4; 5g; f2; 3gg; ff1; 3; 5g; f2; 4gg;
ff1; 3; 4g; f2; 5gg; ff1; 2; 5g; f3; 4gg; ff1; 2; 4g; f3; 5gg; ff1; 2; 3g; f4; 5gg]

These are all the set partitions of f1; 2; 3; 4; 5g into at most two parts.

Sage] [len({x for x in SetPartitions(n) if min(map(len,x))>=2}) for n in [1..7]]

[0; 1; 1; 4; 11; 41; 162]

This is the number Cn of partitions of a set of size n such that each part consists of at least 2 elements.

The reason why len(SetPartitions(7)) is much slower than SetPartitions(7).cardinality() is that
SetPartitions(7).cardinality() actually calls bell_number(7) and never constructs the 877 set partitions.

(h) The conjecture making is left for the thrill of it.

�
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