
Problems #6 Special Functions & WZ Theory
AARMS Summer School, Dalhousie University

Jul 11 � Aug 5, 2016

Problem 1. Let D=
d

dx
.

(a) (1 XP) What is the commutator of D and xn? In other words, compute Dxn¡xnD.

(b) (1 XP) Write (xD)3 as a linear combination of terms of the form xaDb.

(c) (2 XP extra) Come up with (and, possibly prove) a general formula for (xD)n in the spirit above.

You are encouraged to let Sage help you get an idea. For instance, check out how to use FreeAlgebra to create
a non-commutative free algebra A, and then check out A.g_algebra for declaring commutation relations.

If this tickles your fancy, this could be turned into a Sage project.

Solution.

(a) Dxn¡xnD=nxn¡1

(b) We just observed that Dxn=xnD+nxn¡1. Using that a few times, we obtain

(xD)2 = x (Dx )D=x (xD+1 )D=x2D2+xD

(xD)3 = xD(xD)2=xD(x2D2+xD)=x(Dx2)D2+(xD)2=x(x2D+2x)D2+x2D2+xD

= x3D3+3x2D2+xD

(c) Let's have Sage do all the heavy lifting:

Sage] F.<x,Dx> = FreeAlgebra(QQ,2)

Sage] U = F.g_algebra({Dx*x: x*Dx+1})

Sage] U.inject_variables()

Defining x, Dx

Sage] (x*Dx)^3

x3Dx3+3x2Dx2+xDx

Sage] (x*Dx)^5

x5Dx5+ 10x4Dx4+ 25x3Dx3+ 15 x2Dx2+xDx

Conjecture away! �

Problem 2. (1 XP) Determine the ordinary generating function of the squares Fn2 of the Fibonacci numbers.

Solution. We showed in class that Fn+32 ¡ 2Fn+2
2 ¡ 2Fn+12 + Fn

2= 0. Hence, proceeding as we did for the Fibonacci
numbers themselves, we derive that

X
n=0

1

Fn
2xn=

x¡x2
1¡ 2x¡ 2x2+x3 =

x(1¡x)
(1+x)(1¡ 3x+x2) :

Here is a reminder how we obtained the recursion for Fn2. The Fibonacci numbers are annihilated by the operator

S2¡S ¡ 1= (S ¡ ')(S ¡  );
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where '=
¡
1 + 5

p �
/2 and  =

¡
1¡ 5

p �
/2. Consequently, Fn can be expressed as a linear combination of 'n and

 n. It follows that Fn2 can be expressed as a linear combination of '2n,  2n and (' )n. In particular, these numbers
are annihilated by

(S ¡ '2)(S ¡  2)(S ¡ ' ) = (S2¡ 3S+1)(S+1)=S3¡ 2S2¡ 2S+1:

In other words, we have Fn+32 ¡ 2Fn+22 ¡ 2Fn+12 +Fn
2=0. �

Problem 3. (1 XP) Let d> 0 be an integer. Prove that there are constants �; � such that, for all n> 0,

Fn+d=�Fn+ �Fn+1:

Solution. The sequences (Fn)n>0, (Fn+1)n>0 and (Fn+d)n>0 are all elements of the two dimensional space of solutions
to the recurrence

(S2¡S ¡ 1)Xn=0:

Since (Fn)n>0 and (Fn+1)n>0 are linearly independent (they are clearly not just multiples of each other), they form a
basis for that space. In particular, (Fn+d)n>0 can be written as a (unique) linear combination of these two sequences. �

Problem 4. (1 XP) Why is it impossible for the Catalan numbers Cn=
1

n+1

�
2n
n

�
to satisfy a linear recurrence with

constant coe�cients?

Solution. We showed in class that the ordinary generating function for the Catalan numbers is

X
n>0

Cnx
n=

1¡ 1¡ 4x
p

2x
:

Since their generating function is not rational, the Catalan numbers are not C-�nite. �

Problem 5. The purpose of this problem is to look at linear di�erential equations with constant coe�cients, and to
observe how transparent the theory becomes when viewing them through our operator glasses. So, put on those glasses!

(a) (1 XP) What is the general solution to the di�erential equation y 00¡ y 0¡ 6y=0?

(b) (1 XP) What is the general solution to the di�erential equation y 00¡ 6y 0+9y=0?

(c) (1 XP) Come up with a theorem that provides a basis for the solutions to any homogeneous linear di�erential
equation

y(k)+ ck¡1y
(k¡1)+ :::+ c1y

0+ c0y=0:

(d) (1 XP) What is the general solution to the di�erential equation y 00¡ y 0¡ 6y= ex?

Hint: Can you reduce to the homogeneous case?

(e) (1 XP) What is the general solution to the di�erential equation y 00¡ y 0¡ 6y=2e3x?

Solution.

(a) In operator notation, this di�erential equation is

(D2¡D¡ 6)y=0;
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which we can factor as (D¡ 3)(D+2)y=0. In this form, it is obvious that we have the two special solutions
y(x) = e3x and y(x) = e¡2x. On the other hand, the space of solutions is a two dimensional vector space, and
so we conclude that the general solution is

y(x) = c1 e
3x+ c2 e

¡2x:

(b) We proceed as before, and write the di�erential equation as

(D2¡ 6D+9)y=(D¡ 3)2y=0:

One solution is again obvious: y(x)=e3x. We �nd a second independent solution by solving the inhomogeneous
di�erential equation

(D¡ 3)y= e3x

of order 1 (this is the same approach we took to �nd missing solutions in the case of recurrences with constant
coe�cients). Variation of constants (or an educated guess) leads to y(x) = xe3x. For our original di�erential
equation, we have therefore found the general solution

y(x)= (c0+ c1x)e
3x:

(c) Let r1; r2; :::; rd be the distinct roots of p(D) =Dk+ ck¡1D
k¡1+ :::+ c0, and denote with m1; m2; :::; md their

multiplicity. Then a basis for the di�erential equation p(D)y=0 is given by the functions

fxkerj : j 2f1; 2; :::dg; k 2f0; 1; :::;mj¡ 1gg:

(d) We write y 00¡ y 0¡ 6y= ex as

(D¡ 3)(D+2)y= ex;

and multiply both sides with D¡ 1 to obtain the homogeneous di�erential equation

(D¡ 1)(D¡ 3)(D+2)y=0:

Hence, any solution to our di�erential equation must be of the form

y(x)= c1e
x+ c2e

3x+ c3e
¡2x:

In fact, disregarding solutions to the associated homogeneous equation, we know there must a solution of the
form cex. We determine the value of c by substituting into the di�erential equation:

(D¡ 3)(D+2)cex= c(1¡ 3)(1+2)ex=¡6cex=
!
ex

Hence, we have found the particular solution y(x)=¡1

6
ex. The general solution is

y(x)=¡1
6
ex+ c1 e

3x+ c2 e
¡2x:

(e) Homogenizing as before, this time multiplying with D¡ 3, we obtain the di�erential equation

(D¡ 1)(D¡ 3)2y=0;

which shows that any solution to our original di�erential equation must be of the form

y(x) = c1e
x+(c2+ c3x)e

3x:

Again, this implies that there must a solution of the form cxe3x.

(D+2)(D¡ 3)cxe3x= c(D+2)e3x=5ce3x=
!
2e3x

Hence, the general solution to our original di�erential equation is

y(x) = c1e
x+

�
c2+

2
5
x

�
e3x: �
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