
Problems #7 Special Functions & WZ Theory
AARMS Summer School, Dalhousie University

Jul 11 � Aug 5, 2016

Problem 1. (2 XP) Let X be the vector space of solutions to the di�erential equation

y(d)+ cd¡1y
(d¡1)+ :::+ c1y

0+ c0y=0;

and let Y be the vector space of solutions to the recurrence

an+d+ cd¡1an+d¡1+ :::+ c1an+1+ c0an=0:

Show that the map EGF:Y!X de�ned by (an)n>0 7!
X
n>0

an
xn

n!
is an isomorphism.

Solution. The map is clearly linear and injective.

Since X and Y both have dimension d (the number of initial conditions needed to describe a unique solution), it only
remains to show that the map is actually well-de�ned, that is, that it sends solutions of the recurrence to solutions of
the di�erential equation.

This, however, is a direct consequence of the fact that

EGF(San)=DEGF(an);

which was already observed in an earlier problem (if f(x) is the egf of the sequence an, then f 0(x) is the egf of an+1). �

Problem 2. (1 XP) True or false? Any eventually periodic sequence is C-�nite.

Solution. True. Suppose the sequence (an)n>0 is eventually periodic with period T , that is, an+T =an for all n>N .
Equivalently, an+T+N = an+N for all n> 0. This is a linear recurrence with constant coe�cients (the corresponding
operator is (ST ¡ 1)SN), and so the sequence is C-�nite. �

Problem 3. (2 XP) The Chebyshev polynomials Tn(x) of the �rst kind are the unique polynomials satisfying

Tn(cos�)= cos(n�):

Prove that the sequence (Tn(x))n>0 is C-�nite.

Solution. Write x= cos�. Then,X
n>0

Tn(x)zn =
X
n>0

cos(n�)zn=
1

2

X
n>0

(ein�+ e¡in�)zn

=
1
2

�
1

1¡ ei�z +
1

1¡ e¡i�z

�
=
1
2

2¡ 2(cos�)z
1¡ 2(cos�)z+ z2

=
1¡xz

1¡ 2xz+ z2
;

so that, in particular, the sequence (Tn(x))n>0 is C-�nite.

Alternatively, we can use the trigonometric identity

cos(n�)= 2cos(�)cos((n¡ 1)�)¡ cos((n¡ 2)�)

to derive the recurrence

Tn+2(x)= 2xTn+1(x)¡Tn(x);
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which again shows the C-�niteness.

Sage] [chebyshev_T(n,x) for n in [0..5]]

[1; x; 2 x2¡ 1; 4 x3¡ 3 x; 8 x4¡ 8 x2+1; 16 x5¡ 20 x3+5 x] �

Problem 4. (3 XP) Recall that the Bernoulli polynomials Bn(t) are the polynomials characterized by

X
n=0

1

Bn(t)
xn

n!
=

xetx

ex¡ 1 :

(a) Show that the Bernoulli polynomials satisfy Bn0 (t)=nBn¡1(t).

(b) Further, show that, for n> 1, the Bernoulli polynomials satisfy
Z
0

1

Bn(t) dt=0.

(c) Observe that the Bernoulli polynomials are characterized by the initial condition B0(t) = 1 together with the
two properties you just showed. Compute the �rst few Bernoulli polynomials via that route.

(d) Forget that you know the exponential generating function of the Bernoulli polynomials. Derive this generating
function from the two properties above.

Solution. Let us write F (x; t)=
xetx

ex¡ 1 .

(a) On the level of exponential generating functions, this translates into (review the earlier problem on exponential
generating functions)

d
dt
F (x; t)=xF (x; t);

which is obviously satis�ed.

(b) We need to check that Z
0

1

F (x; t)dt=1;

which is readily done.

(c) For comparison, here are the �rst few Bernoulli polynomials according to Sage:

Sage] [bernoulli_polynomial(x,n) for n in [0..5]]�
1; x¡ 1

2
; x2¡x+ 1

6
; x3¡ 3

2
x2+

1
2
x; x4¡ 2x3+x2¡ 1

30
; x5¡ 5

2
x4+

5
3
x3¡ 1

6
x

�
(d) The di�erential equation d

dt
F (x; t)=xF (x; t) implies that F (x; t) is of the form

F (x; t)= c(x)ext:

Combined with the second property, we then �nd

1=

Z
0

1

F (x; t)dt=

Z
0

1

c(x)extdt=
c(x)
x

(ex¡ 1);

which we solve for c(x) to �nd c(x)=x/(ex¡ 1). In conclusion, as we knew before forgetting, the exponential
generating function is

F (x; t)=
xext

ex¡ 1 : �
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Problem 5. (1 XP) Show that the Bernoulli polynomials have the expansion Bn(t)=
X
k=0

n �
n
k

�
Bn¡kt

k.

Solution. Note the right-hand side is the convolution of two exponential generating functions. Observe that the egf
of the sequence (tn)n>0 is etx. Hence, on the level of generating functions, the formula translates to

xetx

ex¡ 1 =
x

ex¡ 1 � e
tx;

which is obviously true. �

Problem 6. (1 XP) Give a (rough) asymptotic estimate for the Bernoulli numbers B2n as n!1.

Solution. The exponential generating function

X
n=0

1

Bn
xn

n!
=

x
ex¡ 1

has radius of convergence 2� (the dominant singularity is at x=2�i). Hence,

limsup
n!1

�
jBnj
n!

�
1/n

=
1
2�
:

It follows that, for any "> 0,

jB2nj
(2n)!

<

�
1
2�

+ "

�
2n

for large enough n. It follows from Stirling's approximation that

n!� 2�n
p �

n
e

�n
; (2n)!� 4�n

p �
2n
e

�
2n

;

so that, for large enough n,

jB2nj<
�
n
�e

+ "
�
2n
:

Indeed, with more e�ort, one can show that

B2n� 4(¡1)n¡1 �n
p �

n
�e

�
2n
: �

Problem 7. (2 XP) Let Bn(x) denote the Bernoulli polynomials.

(a) Prove that 1p+2p+ :::+N p=
Bp+1(N +1)¡Bp+1(1)

p+1
.

(b) Show that 13+23+ :::+N 3=(1+2+ :::+N)2.

Solution.

(a) In class, we showed that X
x=0

N¡1

xp=
1

p+1

X
n=0

p �
p+1
n

�
BnN

p+1¡n:
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Therefore, using the expansion of the Bernoulli polynomials proved in an earlier exercise, we have

X
x=0

N¡1

xp=
1

p+1

"X
n=0

p+1 �
p+1
n

�
BnN

p+1¡n¡Bp+1

#
=
Bp+1(N)¡Bp+1(0)

p+1
;

which is equivalent to the claimed evaluation

X
x=1

N¡1

xp=
Bp+1(N)¡Bp+1(1)

p+1
:

Note that both sides only change for p=0, because Bp=Bp(0)=Bp(1) with the single exception of B1=B1(0)=
¡1

2
=/

1

2
=B1(1).

Alternatively, computing exponential generating functions directly, we have

X
p>0

(1p+2p+ :::+N p)
xp

p!
=

X
m=1

N X
p>0

mp x
p

p!
=

X
m=1

N

emx= ex
eNx¡ 1
ex¡ 1

on one side, and

X
p>0

Bp+1(N +1)¡Bp+1(1)
p+1

xp

p!
=
1
x

X
p>0

(Bp+1(N +1)¡Bp+1(1))
xp+1

(p+1)!
=
1
x

"
xe(N+1)x

ex¡ 1 ¡ xex

ex¡ 1

#

on the other sides. Both are clearly equal, and so the identity follows.

(b) Indeed,

13+23+ :::+N3=
B4(N +1)¡B4(1)

4
=

�
N(N +1)

2

�
2

=(1+2+ :::+N)2:

Sage] bernoulli_polynomial(x,4)

x4¡ 2 x3+x2¡ 1
30

Sage] (bernoulli_polynomial(x+1,4)-bernoulli_polynomial(1,4)).factor()

(x+1)2x2 �
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