Problem 1. (2 XP) Let \mathcal{X} be the vector space of solutions to the differential equation

$$
y^{(d)} + c_{d-1}y^{(d-1)} + \dots + c_1y' + c_0y = 0,
$$

and let *Y* be the vector space of solutions to the recurrence

$$
a_{n+d} + c_{d-1}a_{n+d-1} + \dots + c_1a_{n+1} + c_0a_n = 0.
$$

Show that the map $EGF: \mathcal{Y} \to \mathcal{X}$ defined by $(a_n)_{n \geq 0} \mapsto \sum a_n \frac{x^n}{n!}$ is an isomorphism $n \geqslant 0$ $a_n \frac{x^n}{n!}$ is an isomorphism.

Problem 2. (1 XP) True or false? Any eventually periodic sequence is *C*-finite.

Problem 3. (2 XP) The Chebyshev polynomials $T_n(x)$ of the first kind are the unique polynomials satisfying

$$
T_n(\cos\theta) = \cos(n\theta).
$$

Prove that the sequence $(T_n(x))_{n\geq 0}$ is *C*-finite.

Problem 4. (3 XP) Recall that the Bernoulli polynomials $B_n(t)$ are the polynomials characterized by

$$
\sum_{n=0}^{\infty} B_n(t) \frac{x^n}{n!} = \frac{xe^{tx}}{e^x - 1}.
$$

- (a) Show that the Bernoulli polynomials satisfy $B'_n(t) = nB_{n-1}(t)$.
- (b) Further, show that, for $n \ge 1$, the Bernoulli polynomials satisfy $\int_0^1 B_n(t) dt$ ${}^{1}B_{n}(t) dt = 0.$
- (c) Observe that the Bernoulli polynomials are characterized by the initial condition $B_0(t) = 1$ together with the two properties you just showed. Compute the first few Bernoulli polynomials via that route.
- (d) Forget that you know the exponential generating function of the Bernoulli polynomials. *Derive* this generating function from the two properties above.

Problem 5. (1 XP) Show that the Bernoulli polynomials have the expansion $B_n(t) = \sum_{k=1}^{\infty} {n \choose k} B_{n-k} t^k$. $k=0$ $\sum_{k=0}^{n} {n \choose k} B_{n-k} t^k$.

Problem 6. (1 XP) Give a (rough) asymptotic estimate for the Bernoulli numbers B_{2n} as $n \to \infty$.

Problem 7. (2 XP) Let $B_n(x)$ denote the Bernoulli polynomials.

- (a) Prove that $1^p + 2^p + \ldots + N^p = \frac{B_{p+1}(N+1) B_{p+1}(1)}{p+1}$. $\frac{p+1}{p+1}$.
- (b) Show that $1^3 + 2^3 + \dots + N^3 = (1 + 2 + \dots + N)^2$.